Equations and Inequalities Problem Set

1. [AJC Prelims 17]

Mr Tan invested a total of $\$ 25,000$ in a structured deposit account, bonds and an estate fund. He invested $\$ 7,000$ more in bonds than in estate fund. The projected annual interest rates for structured deposit account, bonds and estate fund are $2 \%, 3 \%$ and 4.5% respectively. Money that is not drawn out at the end of the year will be re-invested for the following year.

Mr Tan plans to draw out his money from all investments at the end of the second year and estimates that he will receive a total of $\$ 26,300$. Find the amount of money Mr Tan invested in each investment, giving your answer to the nearest dollar.
2. [CJC Prelims 17]

The curve with equation $y=f(x)$, where $f(x)$ is a cubic polynomial, has a maximum point with coordinates $\left(-2, \frac{34}{3}\right)$ and a minimum point with coordinates $\left(3,-\frac{19}{2}\right)$. Find the equation of the curve.
3. [DHS Prelims 17]

Using an algebraic method, find the set of values of x that satisfies the inequality

$$
\begin{equation*}
2-x \leq \frac{x}{2-x} \tag{3}
\end{equation*}
$$

Hence solve

$$
2-x^{2} \leq \frac{x^{2}}{2-x^{2}}
$$

4. [DHS Prelims 17]

For this question, leave your answers to the nearest dollar.
Mr Foo invested $\$ 25,000$ in three different stocks A, B and C. After a year, the value of the stocks A and B grew by 2% and 6% respectively, while the value of stock C fell by 2%. Mr Foo did not gain or lose any money. Let a, b and c denote the amount of money he invested in stocks A, B and C respectively.
(a) Find expressions for a and b, in terms of c.
(b) Find the values between which c must lie.

5. [HCI Prelims 17]

(a) By first expressing $3 x-x^{2}-4$ in completed square form, show that $3 x-x^{2}-4$ is always negative for all real values of x. [2]
(b) Hence or otherwise, without the use of a calculator, solve this inequality

$$
\frac{\left(3 x-x^{2}-4\right)(x-1)^{2}}{x^{2}-2 x-5} \leq 0
$$

leaving your answer in exact form.
6. [IJC Prelims 17]

Without using a graphic calculator, solve the inequality

$$
\frac{4 x^{2}+7 x+1}{3 x+1} \leq x+2
$$

Hence solve the inequality

$$
\frac{4 x+7 \sqrt{x}+1}{3 \sqrt{x}+1} \leq \sqrt{x}+2
$$

7. [TPJC Prelims 17]

Without using a calculator, solve the inequality

$$
\frac{3 x^{2}+7 x+1}{x+3}<2 x-1
$$

8. [MI Prelims 17]

The sum of the first n terms of a sequence is denoted by S_{n}. The first term of the sequence is 3 and it is known that $S_{3}=21$ and $S_{10}=210$. Given that S_{n} is a quadratic polynomial in n, find S_{n} in terms of n. [3]

Answers

1. $x=13938, y=9031, z=2031$.
2. $y=\frac{1}{3} x^{3}-\frac{1}{2} x^{2}-6 x+4$.
3. $\{x: 1 \leq 2<2$ or $x \geq 4\}$.
$x \leq-2$ or $-\sqrt{2}<x \leq-1$ or $1 \leq x<\sqrt{2}$ or $x \geq 2$.
4. (a) $a=37500-2 c, b=c-12500$.
(b) Between 12500 and 18750 .
5. $x<1-\sqrt{6}$ or $x>1+\sqrt{6}$ or $x=1$.
6. $x \leq-1$ or $-\frac{1}{3}<x \leq 1$. $0 \leq x \leq 1$.
7. $x<-3$.
8. $S_{n}=2 n^{2}+n$.
