Maclaurin Series Problem Set

1. [ACJC Prelims 17]

- (a) Expand $(k + x)^n$, in ascending powers of x, up to and including the term in x^2 , where k is a non-zero real constant and n is a negative integer. [3]
- (b) State the range of values of x for which the expansion is valid. [1]
- (c) In the expansion of $(k + y + 3y^2)^{-3}$, the coefficient of y^2 is 2. By using the expansion in (a), find the value of k. [3]

2. [ACJC Prelims 17]

It is given that $e^y = (1 + \sin x)^2$.

(a) Show that

$$e^{y}\left(\frac{\mathrm{d}^{2}y}{\mathrm{d}x^{2}} + \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^{2}\right) = 2(\cos 2x - \sin x).$$

By repeated differentiation, find the series expansion of y in ascending powers of x, up to and including the term in x^3 , simplifying your answer. [5]

(b) Show how you can use the standard series expansion(s) to verify that the terms up to x^3 for your series expansion of y in (a) are correct. [3]

3. [AJC Prelims 17]

The diagram shows a quadrilateral ABCD, where AB = 2, $BC = \sqrt{2}$, $\angle ABC = \frac{\pi}{4} - \theta$ radians and $\angle CAD = \theta$ radians.

Show that $AC = \sqrt{6 - 4\cos\theta - 4\sin\theta}$. [2]

Given that θ is small enough for θ^3 and higher powers of θ to be neglected, show that

$$AD \approx a + b\theta + c\theta^2$$

[5]

where a, b and c are constants to be determined.

4. [AJC Prelims 17]

A curve C has equation y = f(x). The equation of the tangent to the curve C at the point where x = 0 is given by 2x - ay = 3 where a is a positive constant.

It is also given that y = f(x) satisfies the equation

$$(1+2x)\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + y\frac{\mathrm{d}y}{\mathrm{d}x} = 0$$

and that the third term in the Maclaurin's expansion of f(x) is $\frac{1}{3}x^2$.

Find the value of a. Hence, find the Maclaurin's series for f(x) in ascending powers of x, up to and including the term in x^3 . [7]

5. [CJC Prelims 17]

- (a) Given that the first two terms in the series expansion of $\sqrt{4-x}$ are equal to the first two terms in the series expansion of $p+\ln(q-x)$, find the constants p and q. [5]
- (b) i. Given that y = tan⁻¹(ax+1) where a is a constant, show that ^{dy}/_{dx} = a cos² y. Use this result to find the Maclaurin series for y in terms of a, up to and including the term in x³. [5]
 ii. Hence, or otherwise, find the series expansion of ¹/_{1+(4x+1)²}
 - up to and including the term in x^2 . [3]

6. [DHS Prelims 17]

In the isosceles triangle PQR, PQ = 2 and $\angle QPR = \angle PQR = \frac{\pi}{3} + \theta$ radians. The area of triangle PQR is denoted by A.

Given that θ is a sufficiently small angle, show that

$$A = \frac{\sqrt{3} + \tan \theta}{1 - \sqrt{3} \tan \theta} \approx a + b\theta + c\theta^2,$$

for constants a, b and c to be determined in exacct form.

 $\left[5\right]$

7. [HCI Prelims 17]

(a) It is given that $\ln y = 2 \sin x$. Show that

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = -y\ln y + \frac{1}{y}\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2.$$

[2]

[1]

- (b) Find the first four terms of the Maclaurin series for y in ascending powers of x. [4]
- (c) Using appropriate expansions from MF26, verify the expansion found in part (b). [2]
- (d) Given that x is sufficiently small for x^4 and higher powers of x to be neglected, deduce an approximation for $e^{2 \sin x \ln(\sec x)}$. [2]

8. [IJC Prelims 17]

(a) The variables x and y are related by

$$(x+y)\frac{\mathrm{d}y}{\mathrm{d}x} + ky = 2$$
 and $y = 1$ at $x = 0$,

where k is a constant. Show that

$$(x+y)\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + (1+k)\frac{\mathrm{d}y}{\mathrm{d}x} + \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2 = 0.$$

By further differentiation of this result, find the Maclaurin series for y, up to and including the term in x^3 , giving the coefficients in terms of k. [4]

(b) Given that x is small, find the series expansion of

$$g(x) = \frac{1}{\sin^2\left(2x + \frac{\pi}{2}\right)}$$

in ascending powers of x, up to and including the term in x^2 . If the coefficient of x^2 in the expansion of g(x) is equal to twice the coefficient of x^2 in the Maclaurin series for y found in part (a), find the value of k. [4]

9. [TPJC Prelims 17]

- (a) Find the series expansion of $e^{2x} \ln(1+3x)$, where $-\frac{1}{3} < x \leq \frac{1}{3}$, in ascending powers of x, up to and including the term in x^3 . [3]
- (b) In the triangle PQR as shown in the diagram below, PR = 1, $\angle QPR = \frac{3\pi}{4}$ radians and $\angle PRQ = 2\theta$ radians.

- i. Show that $QR = \frac{1}{\cos 2\theta \sin 2\theta}$. [4]
- ii. Given that θ is a sufficiently small angle, show that

$$QR \approx 1 + a\theta + b\theta^2,$$

for constants a and b to be determined. [4]

10. **[TJC Prelims 17]**

Given that $e^y = \sqrt{e + x + \sin x}$, show that

$$2\mathrm{e}^{2y}\frac{\mathrm{d}^2y}{\mathrm{d}x^2} + 4\mathrm{e}^{2y}\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2 + \sin x = 0.$$
[2]

- (a) Find the values of y, $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ when x = 0. Hence, find in terms of e, the Maclaurin's series for $\ln(e + x + \sin x)$, up to and including the term in x^2 . [4]
- (b) By using appropriate standard series expansions from the List of Formulae (MF26), verify the correctness of the first three terms in the series expansion for $\ln(e + x + \sin x)$ found in part (a). [3]
- (c) Use your answer to part (a) to give an approximation for

$$\int_0^{e^{-1}} \frac{2e - 4x}{e^2 \ln(e + x + \sin x)} \, \mathrm{d}x,$$

r in terms of e

giving your answer in terms of e.

[3]

Answers

1. (a)
$$k^n (1 + \frac{n}{k}x + \frac{n(n-1)}{2k^2}x^2 + ...)$$
.
(b) $-|k| < x < |k|$.
(c) 0.642.
2. $y = 2x - x^2 + \frac{1}{3}x^3 + ...$
3. $a = \sqrt{2}, b = -\sqrt{2}, c = -\frac{\sqrt{2}}{2}$.
4. $a = 3, -1 + \frac{2}{3} + \frac{1}{3}x^2 - \frac{5}{27}x^3 + ...$
5. (a) $p = 2 - \ln 4$.
(b) i. $\frac{\pi}{4} + \frac{1}{2}ax - \frac{1}{4}a^2x^2 + \frac{1}{12}a^3x^3 + ...$
ii. $\frac{1}{2} - 2x + 4x^2$.
6. $\sqrt{3} + 4\theta + 4\sqrt{3}\theta^2$.
7. (b) $y = 1 + 2x + 2x^2 + x^3 + ...$
(d) $e^{2\sin x} \cos x \approx 1 + 2x + \frac{3}{2}x^2 + ...$
8. (a) $y = 1 + (2 - k)x + (\frac{3k-6}{2})x^2 + (k^2 - 6k + 8)x^3 + ...$
(b) $1 + 4x^2 + ...$
 $k = \frac{10}{3}$.
9. (a) $3x + \frac{3}{2}x^2 + 6x^3 + ...$
(b) $a = 2, b = 6$.

10. (a) $\ln(e + x + \sin x) = 1 + \frac{2}{e}x - \frac{2}{e^2}x^2 + \dots$ (b) $\ln(e^4 + 2e^2 - 2) - 4$.