Maclaurin Series Problem Set

1. [ACJC Prelims 17]
(a) Expand $(k+x)^{n}$, in ascending powers of x, up to and including the term in x^{2}, where k is a non-zero real constant and n is a negative integer.
(b) State the range of values of x for which the expansion is valid. [1]
(c) In the expansion of $\left(k+y+3 y^{2}\right)^{-3}$, the coefficient of y^{2} is 2 . By using the expansion in (a), find the value of k.
2. [ACJC Prelims 17]

It is given that $\mathrm{e}^{y}=(1+\sin x)^{2}$.
(a) Show that

$$
\mathrm{e}^{y}\left(\frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}+\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)^{2}\right)=2(\cos 2 x-\sin x)
$$

By repeated differentiation, find the series expansion of y in ascending powers of x, up to and including the term in x^{3}, simplifying your answer.
(b) Show how you can use the standard series expansion(s) to verify that the terms up to x^{3} for your series expansion of y in (a) are correct.

3. [AJC Prelims 17]

The diagram shows a quadrilateral $A B C D$, where $A B=2, B C=\sqrt{2}$, $\angle A B C=\frac{\pi}{4}-\theta$ radians and $\angle C A D=\theta$ radians.

Show that $A C=\sqrt{6-4 \cos \theta-4 \sin \theta}$.
Given that θ is small enough for θ^{3} and higher powers of θ to be neglected, show that

$$
A D \approx a+b \theta+c \theta^{2}
$$

where a, b and c are constants to be determined.
4. [AJC Prelims 17]

A curve C has equation $y=f(x)$. The equation of the tangent to the curve C at the point where $x=0$ is given by $2 x-a y=3$ where a is a positive constant.
It is also given that $y=f(x)$ satisfies the equation

$$
(1+2 x) \frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+y \frac{\mathrm{~d} y}{\mathrm{~d} x}=0
$$

and that the third term in the Maclaurin's expansion of $f(x)$ is $\frac{1}{3} x^{2}$. Find the value of a. Hence, find the Maclaurin's series for $f(x)$ in ascending powers of x, up to and including the term in x^{3}.

5. [CJC Prelims 17]

(a) Given that the first two terms in the series expansion of $\sqrt{4-x}$ are equal to the first two terms in the series expansion of $p+\ln (q-x)$, find the constants p and q.
(b) i. Given that $y=\tan ^{-1}(a x+1)$ where a is a constant, show that $\frac{\mathrm{d} y}{\mathrm{~d} x}=a \cos ^{2} y$. Use this result to find the Maclaurin series for y in terms of a, up to and including the term in x^{3}.
ii. Hence, or otherwise, find the series expansion of $\frac{1}{1+(4 x+1)^{2}}$ up to and including the term in x^{2}.

6. [DHS Prelims 17]

In the isosceles triangle $P Q R, P Q=2$ and $\angle Q P R=\angle P Q R=\frac{\pi}{3}+\theta$ radians. The area of triangle $P Q R$ is denoted by A.

Given that θ is a sufficiently small angle, show that

$$
A=\frac{\sqrt{3}+\tan \theta}{1-\sqrt{3} \tan \theta} \approx a+b \theta+c \theta^{2}
$$

for constants a, b and c to be determined in exacct form.

7. [HCI Prelims 17]

(a) It is given that $\ln y=2 \sin x$. Show that

$$
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=-y \ln y+\frac{1}{y}\left(\frac{\mathrm{~d} y}{\mathrm{~d} x}\right)^{2} .
$$

(b) Find the first four terms of the Maclaurin series for y in ascending powers of x.
(c) Using appropriate expansions from MF26, verify the expansion found in part (b).
(d) Given that x is sufficiently small for x^{4} and higher powers of x to be neglected, deduce an approximation for $\mathrm{e}^{2 \sin x-\ln (\sec x)}$. [2]

8. [IJC Prelims 17]

(a) The variables x and y are related by

$$
(x+y) \frac{\mathrm{d} y}{\mathrm{~d} x}+k y=2 \quad \text { and } \quad y=1 \text { at } x=0
$$

where k is a constant. Show that

$$
(x+y) \frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+(1+k) \frac{\mathrm{d} y}{\mathrm{~d} x}+\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)^{2}=0
$$

By further differentiation of this result, find the Maclaurin series for y, up to and including the term in x^{3}, giving the coefficients in terms of k.
(b) Given that x is small, find the series expansion of

$$
g(x)=\frac{1}{\sin ^{2}\left(2 x+\frac{\pi}{2}\right)}
$$

in ascending powers of x, up to and including the term in x^{2}.
If the coefficient of x^{2} in the expansion of $g(x)$ is equal to twice the coefficient of x^{2} in the Maclaurin series for y found in part (a), find the value of k.

9. [TPJC Prelims 17]

(a) Find the series expansion of $\mathrm{e}^{2 x} \ln (1+3 x)$, where $-\frac{1}{3}<x \leq \frac{1}{3}$, in ascending powers of x, up to and including the term in x^{3}. [3]
(b) In the triangle $P Q R$ as shown in the diagram below, $P R=1$, $\angle Q P R=\frac{3 \pi}{4}$ radians and $\angle P R Q=2 \theta$ radians.

i. Show that $Q R=\frac{1}{\cos 2 \theta-\sin 2 \theta}$.
ii. Given that θ is a sufficiently small angle, show that

$$
Q R \approx 1+a \theta+b \theta^{2}
$$

for constants a and b to be determined.
10. [TJC Prelims 17]

Given that $\mathrm{e}^{y}=\sqrt{\mathrm{e}+x+\sin x}$, show that

$$
\begin{equation*}
2 \mathrm{e}^{2 y} \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}+4 \mathrm{e}^{2 y}\left(\frac{\mathrm{~d} y}{\mathrm{~d} x}\right)^{2}+\sin x=0 . \tag{2}
\end{equation*}
$$

(a) Find the values of $y, \frac{\mathrm{~d} y}{\mathrm{~d} x}$ and $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$ when $x=0$. Hence, find in terms of e , the Maclaurin's series for $\ln (\mathrm{e}+x+\sin x)$, up to and including the term in x^{2}.
(b) By using appropriate standard series expansions from the List of Formulae (MF26), verify the correctness of the first three terms in the series expansion for $\ln (\mathrm{e}+x+\sin x)$ found in part (a). [3]
(c) Use your answer to part (a) to give an approximation for

$$
\int_{0}^{\mathrm{e}^{-1}} \frac{2 \mathrm{e}-4 x}{\mathrm{e}^{2} \ln (\mathrm{e}+x+\sin x)} \mathrm{d} x
$$

giving your answer in terms of e.

Answers

1. (a) $k^{n}\left(1+\frac{n}{k} x+\frac{n(n-1)}{2 k^{2}} x^{2}+\ldots\right)$.
(b) $-|k|<x<|k|$.
(c) 0.642 .
2. $y=2 x-x^{2}+\frac{1}{3} x^{3}+\ldots$.
3. $a=\sqrt{2}, b=-\sqrt{2}, c=-\frac{\sqrt{2}}{2}$.
4. $a=3,-1+\frac{2}{3}+\frac{1}{3} x^{2}-\frac{5}{27} x^{3}+\ldots$
5. (a) $p=2-\ln 4$.
(b) i. $\frac{\pi}{4}+\frac{1}{2} a x-\frac{1}{4} a^{2} x^{2}+\frac{1}{12} a^{3} x^{3}+\ldots$
ii. $\frac{1}{2}-2 x+4 x^{2}$.
6. $\sqrt{3}+4 \theta+4 \sqrt{3} \theta^{2}$.
7. (b) $y=1+2 x+2 x^{2}+x^{3}+\ldots$
(d) $\mathrm{e}^{2 \sin x} \cos x \approx 1+2 x+\frac{3}{2} x^{2}+\ldots$
8. (a) $y=1+(2-k) x+\left(\frac{3 k-6}{2}\right) x^{2}+\left(k^{2}-6 k+8\right) x^{3}+\ldots$
(b) $1+4 x^{2}+\ldots$.
$k=\frac{10}{3}$.
9. (a) $3 x+\frac{3}{2} x^{2}+6 x^{3}+\ldots$
(b) $a=2, b=6$.
10. (a) $\ln (\mathrm{e}+x+\sin x)=1+\frac{2}{\mathrm{e}} x-\frac{2}{\mathrm{e}^{2}} x^{2}+\ldots$
(b) $\ln \left(e^{4}+2 e^{2}-2\right)-4$.
