Sigma Notation Problem Set

1. [ACJC Prelims 17]

By writing

$$
\sin \left(x+\frac{1}{4}\right) \pi-\sin \left(x-\frac{3}{4}\right) \pi
$$

in terms of a single trigonometric function, find $\sum_{r=1}^{n} \cos \left(x-\frac{1}{4}\right) \pi$, leaving your answer in terms of n.
2. [AJC Prelims 17 (modified)]
(a) Use partial fractions to show that

$$
\sum_{n=1}^{N} \frac{1}{4 n^{2}-1}=\frac{1}{2}-\frac{1}{2(2 N+1)}
$$

(b) Hence find $\sum_{n=1}^{2 N} \frac{1}{4(n+1)^{2}-1}$.

$$
\begin{equation*}
\text { Deduce that } \sum_{n=1}^{2 N} \frac{1}{(2 n+3)^{2}} \text { is less than } \frac{1}{6} \text {. } \tag{5}
\end{equation*}
$$

3. [CJC Prelims 17]
(a) Express $\frac{r+1}{(r+2)!}$ in the form

$$
\frac{A}{(r+1)!}+\frac{B}{(r+2)!},
$$

where A and B are integers to be found.
(b) Find $\sum_{r=1}^{n} \frac{r+1}{3(r+2)!}$.
(c) Hence evaluate $\sum_{r=0}^{\infty} \frac{r+1}{3(r+2)!}$.

4. [DHS Prelims 17]

Given that $\sum_{k=1}^{n} k!\left(k^{2}+1\right)=(n+1)!n$, find

$$
\sum_{k=1}^{n-1}(k+1)!\left(k^{2}+2 k+2\right) .
$$

5. [HCI Prelims 17]

The sum, S_{n} of the first n terms of a sequence, $u_{1}, u_{2}, u_{3}, \ldots$ is given by

$$
S_{n}=b-\frac{3 a}{(n+1)!},
$$

where a and b are constants.
(a) It is given that $u_{1}=k$ and $u_{2}=\frac{2}{3} k$, where k is a constant. Find a and b in terms of k
(b) Find a formula for u_{n} in terms of k, giving your answer in its simplest form.
(c) Determine, with a reason, if the series $\sum_{r=1}^{n} u_{r}$ converges.

6. [IJC Prelims 17]

A sequence $u_{1}, u_{2}, u_{3}, \ldots$ is such that $u_{n}=\frac{1}{2 n^{2}(n-1)^{2}}$ and

$$
u_{n+1}=u_{n}-\frac{2}{n(n-1)^{2}(n+1)^{2}} \text { for all } n \geq 2
$$

(a) Find $\sum_{n=2}^{N} \frac{2}{n(n-1)^{2}(n+1)^{2}}$.
(b) Explain why $\sum_{n=2}^{N} \frac{2}{n(n-1)^{2}(n+1)^{2}}$ is a convergent series, and state the value of the sum to infinity.
(c) Using your answer to (a), find $\sum_{n=1}^{N} \frac{2 N}{(n+1) n^{2}(n+2)^{2}}$.

7. [TPJC Prelims 17]

(a) Express $\frac{1}{r^{2}-1}$ in partial fractions and deduce that

$$
\frac{1}{r\left(r^{2}-1\right)}=\frac{1}{2}\left(\frac{1}{r(r-1)}-\frac{1}{r(r+1)}\right) .
$$

(b) Hence, find the sum S_{n}, of the first n terms of the series

$$
\frac{1}{2 \times 3}+\frac{1}{3 \times 8}+\frac{1}{4 \times 15}+\cdots
$$

(c) Explain why the series converges, and write down the value of the sum to infinity.
(d) Find the smallest value of n for which S_{n} is smaller than the sum to infinity by less than 0.0025 .
8. [TJC Prelims 17]

Given that $\sin [(n+1) x]-\sin [(n-1) x]=2 \cos n x \sin x$, show that

$$
\sum_{r=1}^{n} \cos r x=\frac{\sin \left(n+\frac{1}{2}\right) x-\sin \frac{1}{2} x}{2 \sin \frac{1}{2} x}
$$

Hence express

$$
\cos ^{2}\left(\frac{x}{2}\right)+\cos ^{2}(x)+\cos ^{2}\left(\frac{3 x}{2}\right)+\ldots+\cos ^{2}\left(\frac{11 x}{2}\right)
$$

in the form $a\left(\frac{\sin b x}{\sin c x}+d\right)$, where a, b, c and d are real numbers.

Answers

1. $\frac{1}{2} \sin \left(n+\frac{1}{4}\right) \pi-\frac{1}{2 \sqrt{2}}$.
2. $\frac{1}{6}-\frac{1}{2(4 N+3)}$.
3. (a) $\frac{1}{(r+1)!}-\frac{1}{(r+2)!}$.
(b) $\frac{1}{3}\left(\frac{1}{2}-\frac{1}{(n+2)!}\right)$.
(c) $\frac{1}{3}$.
4. $(n+1)!n-2$.
5. (a) $a=\frac{2}{3} k, b=2 k$.
(b) $u_{n}=\frac{2 k}{n!}\left(\frac{n}{n+1}\right)$.
(c) It converges since $S_{n} \rightarrow 2 k$ as $n \rightarrow \infty$.
6. (a) $\frac{1}{8}-\frac{1}{2 N^{2}(N+1)^{2}}$.
(b) $\frac{1}{8}$.
(c) $\frac{N}{8}\left(1-\frac{4}{(N+1)^{2}(N+2)^{2}}\right)$.
7. (b) $\frac{1}{4}-\frac{1}{2(n+1)(n+2)}$.
(c) As $n \rightarrow \infty, \frac{1}{2(n+1)(n+2)} \rightarrow 0$ so $\frac{1}{4}-\frac{1}{2(n+1)(n+2)}$. Sum to infinity $=\frac{1}{4}$.
(d) 13 .
8. $a=\frac{1}{4}, b=\frac{23}{2}, c=\frac{1}{2}, d=21$.
