Sigma Notation Problem Set

1. [ACJC Prelims 17] By writing

$$\sin\left(x+\frac{1}{4}\right)\pi - \sin\left(x-\frac{3}{4}\right)\pi$$

in terms of a single trigonometric function, find $\sum_{r=1}^{n} \cos\left(x - \frac{1}{4}\right) \pi$, leaving your answer in terms of n. [4]

2. [AJC Prelims 17 (modified)]

(a) Use partial fractions to show that

$$\sum_{n=1}^{N} \frac{1}{4n^2 - 1} = \frac{1}{2} - \frac{1}{2(2N+1)}$$
[3]

(b) Hence find
$$\sum_{n=1}^{2N} \frac{1}{4(n+1)^2 - 1}$$
.
Deduce that $\sum_{n=1}^{2N} \frac{1}{(2n+3)^2}$ is less than $\frac{1}{6}$. [5]

3. [CJC Prelims 17]

(a) Express
$$\frac{r+1}{(r+2)!}$$
 in the form

$$\frac{A}{(r+1)!} + \frac{B}{(r+2)!}$$

where A and B are integers to be found. [2]

(b) Find
$$\sum_{r=1}^{n} \frac{r+1}{3(r+2)!}$$
. [3]

(c) Hence evaluate
$$\sum_{r=0}^{\infty} \frac{r+1}{3(r+2)!}$$
. [2]

4. [DHS Prelims 17]

Given that $\sum_{k=1}^{n} k!(k^2+1) = (n+1)!n$, find

$$\sum_{k=1}^{n-1} (k+1)!(k^2+2k+2).$$
[3]

5. [HCI Prelims 17]

The sum, S_n of the first *n* terms of a sequence, u_1, u_2, u_3, \ldots is given by

$$S_n = b - \frac{3a}{(n+1)!},$$

where a and b are constants.

- (a) It is given that $u_1 = k$ and $u_2 = \frac{2}{3}k$, where k is a constant. Find a and b in terms of k [3]
- (b) Find a formula for u_n in terms of k, giving your answer in its simplest form. [2]

(c) Determine, with a reason, if the series
$$\sum_{r=1}^{n} u_r$$
 converges. [1]

6. [IJC Prelims 17]

A sequence u_1, u_2, u_3, \ldots is such that $u_n = \frac{1}{2n^2(n-1)^2}$ and

$$u_{n+1} = u_n - \frac{2}{n(n-1)^2(n+1)^2}$$
 for all $n \ge 2$.

(a) Find
$$\sum_{n=2}^{N} \frac{2}{n(n-1)^2(n+1)^2}$$
. [3]

(b) Explain why $\sum_{n=2}^{N} \frac{2}{n(n-1)^2(n+1)^2}$ is a convergent series, and state the value of the sum to infinity. [2]

(c) Using your answer to (a), find
$$\sum_{n=1}^{N} \frac{2N}{(n+1)n^2(n+2)^2}$$
. [2]

7. [TPJC Prelims 17]

- (a) Express $\frac{1}{r^2 1}$ in partial fractions and deduce that $\frac{1}{r(r^2 - 1)} = \frac{1}{2} \left(\frac{1}{r(r - 1)} - \frac{1}{r(r + 1)} \right).$ [2]
- (b) Hence, find the sum S_n , of the first *n* terms of the series

$$\frac{1}{2 \times 3} + \frac{1}{3 \times 8} + \frac{1}{4 \times 15} + \cdots$$
[4]

- (c) Explain why the series converges, and write down the value of the sum to infinity. [2]
- (d) Find the smallest value of n for which S_n is smaller than the sum to infinity by less than 0.0025. [3]

8. [TJC Prelims 17]

Given that $\sin[(n+1)x] - \sin[(n-1)x] = 2\cos nx \sin x$, show that

$$\sum_{r=1}^{n} \cos rx = \frac{\sin(n+\frac{1}{2})x - \sin\frac{1}{2}x}{2\sin\frac{1}{2}x}.$$
[4]

Hence express

$$\cos^2\left(\frac{x}{2}\right) + \cos^2(x) + \cos^2\left(\frac{3x}{2}\right) + \ldots + \cos^2\left(\frac{11x}{2}\right)$$

in the form $a\left(\frac{\sin bx}{\sin cx} + d\right)$, where a, b, c and d are real numbers. [3]

Answers

1.
$$\frac{1}{2} \sin(n + \frac{1}{4})\pi - \frac{1}{2\sqrt{2}}$$
.
2. $\frac{1}{6} - \frac{1}{2(4N+3)}$.
3. (a) $\frac{1}{(r+1)!} - \frac{1}{(r+2)!}$.
(b) $\frac{1}{3} \left(\frac{1}{2} - \frac{1}{(n+2)!}\right)$.
(c) $\frac{1}{3}$.
4. $(n+1)!n-2$.
5. (a) $a = \frac{2}{3}k, b = 2k$.
(b) $u_n = \frac{2k}{n!} \left(\frac{n}{n+1}\right)$.
(c) It converges since $S_n \to 2k$ as $n \to \infty$.
6. (a) $\frac{1}{8} - \frac{1}{2N^2(N+1)^2}$.
(b) $\frac{1}{8}$.
(c) $\frac{N}{8} \left(1 - \frac{4}{(N+1)^2(N+2)^2}\right)$.
7. (b) $\frac{1}{4} - \frac{1}{2(n+1)(n+2)}$.
(c) As $n \to \infty$, $\frac{1}{2(n+1)(n+2)} \to 0$ so $\frac{1}{4} - \frac{1}{2(n+1)(n+2)}$. Sum to infinity $= \frac{1}{4}$.
(d) 13.
8. $a = \frac{1}{4}, b = \frac{23}{2}, c = \frac{1}{2}, d = 21$.