Curves and Transformations Problem Set

1. [ACJC Prelims 17 (modified)]

The diagram shows the graph of $y=f(x)$.

The graph passes through the point $(b, 0)$ and has turning points at $P(0,1)$ and $Q(1,2)$. The lines $y=1$ and $x=a$, where $b<a<-\frac{1}{2}$, are asymptotes to the curve.
On separate diagrams, sketch the graphs of
(a) $y=f\left(\frac{x-1}{2}\right)$,
(b) $y=f^{\prime}(x)$,
(c) $y=\frac{1}{f(x)}$,
labelling, in terms of a and b where applicable, the exact coordinates of the points corresponding to P and Q, and the equations of any asymptotes.

2. [AJC Prelims 17]

The curve C has equation $y=\frac{4 x^{2}-k x+2}{x-2}$, where k is a constant.
(a) Show that c has stationary points when $k<9$.
(b) Sketch the graph of C for the case where $6<k<9$, clearly indicating any asymptotes and points and intersection with the axes.
(c) Describe a sequence of transformations which transforms the graph of $y=2 x+\frac{1}{x}$ to the graph of $y=\frac{4 x^{2}-8 x+2}{x-2}$.
(d) By drawing a suitable graph on the same diagram as the graph of C, solve the inequality

$$
\frac{4 x^{2}-8 x+2}{x-2}>\frac{1}{x^{2}} .
$$

3. [CJC Prelims 17]

A parabola, P with equation $(y-a)^{2}=a x$, where a is a constant, undergoes, in succession, the following transformations:

- (A): A translation of 2 units in the positive x-direction,
- (B): A scaling parallel to the y-axis by a factor of $\frac{1}{3}$.

The resulting curve Q passes through the point with coordinates $\left(2, \frac{4}{3}\right)$.
(a) Show that $a=4$.
(b) Find the range of values of k for which the line $y=k x$ does not meet P.

4. [CJC Prelims 17 (modified)]

The diagram shows the sketch of the graph of $y=f(x)$ for $k>0$. The curve passes through the points with coordinates $(k, 0)$ and $(3 k, 0)$, and has a maximum point with coordinates $(4 k, 2)$. The asymptotes are $x=0, x=2 k$ and $y=0$.

Sketch, on separate diagrams, the graph of
(a) $y=f(-x-k)$,
(b) $y=f(|x|)$,
(c) $y=\frac{1}{f(x)}$,
showing clearly, in terms of k, the equations of any asymptote(s), the coordinates of any turning point(s) and any point(s) where the curve crosses the x - and y - axes.

5. [DHS Prelims 17 (modified)]

(a) State a sequence of transformations that transform the graph of $x^{2}+\frac{1}{3}(y-2)^{2}=1$ to the graph of $(x-2)^{2}+y^{2}=1$.
(b) Sketch the graph of $x^{2}+\frac{1}{3}(y-2)^{2}=1$, showing clearly its relevant features.
(c) The diagram shows the curve $y=f(x)$. It has a maximum point at $(4,2)$ and intersects the x-axis at $(-4,0)$ and the origin. The curve has asymptotes $x=-2, y=0$ and $y=x+2$.

Sketch, on separate diagrams, the graphs of
i. $y=|f(x)|$,
ii. $y=f^{\prime}(x)$,
iii. $y=\frac{1}{f(x)}$,
including the coordinates of the points where the graphs cross the axes, the turning points and the equations of any asymptotes, where appropriate.

6. [DHS Prelims 17]

The curve C with equation

$$
y=\frac{x^{2}+(a-1) x-a-a}{x-1},
$$

where a is a constant, has an oblique asymptote $y=x+1$.
(a) Show that $a=1$. Hence sketch C, giving the equations of any asymptotes and the exact coordiantes of any points of intersection with the axes.
(b) ${ }^{* *}$ The region bounded by C for $x>1$ and the lines $y=x+1$, $y=2$ and $y=4$ is rotated through 2π radians about the line $x=1$. By considering a translation of C or otherwise, find the volume of the solid of revolution formed.

7. [HCI Prelims 17 (modified)]

A curve C_{1} has equation $y=\frac{a x^{2}-b x}{x^{2}-c}$, where a, b and c are constants. It is given that C_{1} passes through the point $\left(3, \frac{9}{5}\right)$ and two of its asymptotes are $y=2$ and $x=-2$.
(a) Find the values of a, b and c.

For the rest of the question, use $a=2, b=3$ and $c=4$.
(b) Using an algebraic method, find the exact set of values of y that C_{1} cannot take.
(c) Sketch C_{1}, showing clearly the equations of the asymptotes and the coordinates of the turning points.
(d) It is given that the equation
$e^{y}=x-r$, where $r \in \mathbb{R}^{+}$, has exactly oe real root. State the range of values of r.
(e) The curve C_{2} has equation $y=2+\frac{3 x+5}{x^{2}-2 x-3}$. State a sequence of transformations which transforms C_{1} to C_{2}.

8. [TJC Prelims 17 (modified)]

(a) The graph of $y=f(2-x)$ is obtained when the graph of $y=f(x)$ undergoes a sequence of transformations. Describe the sequence of transformations.
(b) Sketch the graph of $y=f^{\prime}(x)$, stating the equations of any asymptotes and the coordinates of any points of intersection with the axes.
(c) Sketch the graph of $y=\frac{1}{f(x)}$, stating the equations of any asymptotes and the coordinates of any points of intersection with the axes.

9. [TJC Prelims 17]

The diagram shows a circle C which passes through the origin O and the points A and B. It is given that $O A=4$ units and $O B=3$ units.
(a) Show that the coordinates of the centre of C is $\left(2, \frac{3}{2}\right)$. Hence write down the equation of C in the form $(x-2)^{2}+\left(y-\frac{3}{2}\right)^{2}=r^{2}$, where r is a constant to be determined.
(b) By adding a suitable line to the diagram above, find the range of values of m for which the equation $m x-\frac{3}{2}=\sqrt{\frac{25}{4}-(x-2)^{2}}$ has a solution.
10. [TPJC Prelims 17]

The function p is defined by $p: x \mapsto \frac{1-x^{2}}{1+x^{2}}, x \in \mathbb{R}$.
(a) Show algebraically the range of p, showing your working clearly.
(b) Show that $p(x)=p(-x)$ for all $x \in \mathbb{R}$.

It is given that $q(x)=p\left(\frac{1}{2} x-4\right), x \in \mathbb{R}$.
(c) State a sequence of transformations that will transform the graph of p on to the graph of q. Hence state the line of symmetry for the graph of q.
11. The curve of $y=f(x)$ undergoes the following sequence of transformations:

- (A): A translation 2 units in the positive x-axis direction.
- (B): A scaling parallel to the x-axis with scale factor 3 .
- (C): A reflection in the x-axis.
- (D): A translation 1 units in the negative y-axis direction.

The equation of the resulting curve is $y=\frac{2-3 x}{(3 x-2)^{2}+1}$.
Determine an expression for $f(x)$.
12. Sketch the curves described by the following equations on separate diagrams. Show clearly the asymptotes (together with their equations) and the stationary points (including their coordinates), where applicable.
(a) $(x-2)^{2}-\frac{(y+3)^{2}}{4}=1$,
(b) $y^{2}-6 y-9 x^{2}=0$.

Answers

2. (c) Translate the graph 2 units in the direction of the positive x-axis. Scale the resulting graph parallel to the y-axis, by a scale factor of 2 .
Translate the resulting graph by 8 units in the direction of the positive y-axis.
(d) $0.805<x<1.69$ or $x>2$.
3. $k<-\frac{1}{4}$.
4. Translate the graph 2 units in the positive x-direction.

Translate the resulting graph 2 units in the negative y-direction.
Scale the resulting graph by a factor of $\frac{1}{\sqrt{3}}$ parallel to the y-axis.
7. (a) $a=2, b=3$ and $c=4$.
(b) $\left\{y \in \mathbb{R}: 1-\frac{\sqrt{7}}{4}<y<1+\frac{\sqrt{7}}{4}\right\}$.
(d) $r \geq 2$.
(e) Translation of $C_{1} 1$ unit in the negative x-direction. Reflection of the resulting curve in the y-axis.
8. Translation of 2 units in the negative x-direction followed by a reflection about the y-axis.
9. (a) $r=\frac{5}{2}$.
(b) $m \leq-3$ or $m \geq \frac{1}{3}$.
10. (a) $-1<y \leq 1$.
(c) Translation by 4 units in the positive x-direction following by a stretch of factor 2 parallel to the x-axis.
$x=8$.
11. $y=-1+\frac{x}{x^{2}+1}$.

