Function Problem Set

1. [ACJC Prelims 17 (modified)]

The function f is defined by

$$f: x \mapsto \sin\left(x + \frac{1}{4}\right)\pi - \sin\left(x - \frac{3}{4}\right)\pi, \quad x \in \mathbb{R}, a \le x \le 1.$$

The function g is defined by

$$g: x \mapsto \frac{2x}{1-x}, \quad x \in \mathbb{R}, x \ge \frac{13}{5}.$$

- (a) Express f(x) as a single trigonometric function in the form $b\cos(x-c)\pi$. Hence state the range of f and sketch the curve when a = -1, labelling the exact coordinates of the points where the curve crosses the x- and y- axes. [4]
- (b) State the least value of a such that f^{-1} exists, and define f^{-1} in similar form. [3]
- (c) When $a = -\frac{13}{4}$, show that fg exists. Find the range of fg. [3]

2. [AJC Prelims 17]

The function f is defined by

$$f: x \mapsto \frac{\mathrm{e}^x - 1}{\mathrm{e} - 1} \quad \text{for } x \in \mathbb{R}.$$

Sketch the graph of y = f(x) and state the range of f. [3] Another function h is defined by

$$h: x \mapsto \begin{cases} (x-1)^2 + 1 & \text{for } x \le 1\\ 1 - \frac{|1-x|}{2} & \text{for } 1 < x \le 4 \end{cases}$$

Sketch the graph of y = h(x) for $x \le 4$ and explain why the composite function $f^{-1}h$ exists. Hence find the exact value of $(f^{-1}h)^{-1}(3)$. [7]

3. [DHS Prelims 17]

(a) Express $\sin x + \sqrt{3} \cos x$ as $R \sin(x + \alpha)$, where R > 0 and α is an acute angle. [1]

The function f is defined by

$$f: x \mapsto \sin x + \sqrt{3} \cos x, \quad x \in \mathbb{R}, -\frac{\pi}{3} \le x \le \frac{\pi}{6}.$$

the graph of $y = f(x).$ [2]

- (b) Sketch the graph of y = f(x).
- (c) Find $f^{-1}(x)$, stating the domain of f^{-1} . On the same diagram as in part (b), sketch the graph of $y = f^{-1}(x)$, indicating the equation of the line of symmetry. [4]
- (d) ****** Using integration, find the area of the region bounded by the graph of f^{-1} and the axes. [3]

The function g is defined by

$$g: x \mapsto |\ln(x+2)|, \text{ for } x \in \mathbb{R}, x > -2.$$

(e) Show that the composite function gf^{-1} exists, and find the range of gf^{-1} . [3]

4. [HCI Prelims 17]

The *floor function*, denoted by $\lfloor x \rfloor$, is the greatest integer less than or equal to x. For example, |-2.1| = -3 and |3.5| = 3.

The function f is defined by

$$f(x) = \begin{cases} \lfloor x \rfloor & \text{for } x \in \mathbb{R}, -1 \le x < 2, \\ 0 & \text{for } x \in \mathbb{R}, 2 \le x < 3, \end{cases}$$

where |x| denoted the greatest integer less than equal to x. It is given that f(x) = f(x+4).

- (a) Find the values of f(-1.2) and f(3.6). [2]
- (b) Sketch the graph of y = f(x) for $-2 \le x < 4$. [2]
- (c) Hence evaluate $\int_{-2}^{4} f(x) dx$. [1]

5. [IJC Prelims 17]

The function f is given by $f: x \mapsto 3 + \frac{1}{x-2}$ for $x \in \mathbb{R}, x > 2$.

- (a) Find $f^{-1}(x)$ and state the domain of f^{-1} . [3]
- (b) Explain why the composite function f^2 exists. [1]
- (c) Find the value of x for which $f^2(x) = x$. Explain why this value of x satisfies the equation $f(x) = f^{-1}(x)$. [3]

6. [TPJC Prelims 17 (modified)]

The function f is defined by

$$f: x \mapsto (x-k)^2$$
, $x < k$ where $k > 5$.

(a) Find $f^{-1}(x)$ and state the domain of f^{-1} . [3]

The diagram shows the curve with equation y = g(x) with domain $D_g = [-2, 2]$. The curve crosses the x-axis at x = -2, x = -1, x = 1 and x = 2 and has turning points at (-1.5, -1), (0, 4) and (1.5, -1).

- (b) Explain why the composite function fg exists. [2]
- (c) Find, in terms of k,
 - i. the value of fg(-1), [1]
 - ii. the range of fg. [2]

7. The functions f and g are defined by

$$\begin{aligned} f: x \mapsto x^2 + 2x - 3 & \text{for } x \in \mathbb{R}, x < b, \\ g: x \mapsto \frac{3x + 2}{x - 3}, & \text{for } x \in \mathbb{R}, x \neq 3. \end{aligned}$$

(a) Determine, with reason, whether f^{-1} exists when

- i. b = -2,
- ii. b = 2.

(b) For the value of b in (a) such that f^{-1} exists,

i. solve f(x) = f⁻¹(x) exactly. [3]
ii. define f⁻¹, stating clearly its domain. [3]
(c) Determine, with reason, whether gf exists when b = 0. [1]
(d) Find an expression for g⁻¹(x). [2] Hence determine

i.
$$g^2(x)$$
. [1]

ii.
$$g^{2017}(8)$$
. [1]

Answers

1. (a)
$$b = 2, c = \frac{1}{4}$$
.
 $R_f = [-2, 2], (-\frac{1}{4}, 0), (\frac{3}{4}, 0), (0, \sqrt{2}).$
(b) $a = \frac{1}{4}, f^{-1} : x \mapsto \frac{1}{\pi} \cos^{-1} \frac{x}{2} + \frac{1}{4}, x \in [-\sqrt{2}, 2].$
(c) $R_{fg} = [-2, \sqrt{2}).$
2. $1 - \sqrt{e^2 + e}.$
3. (a) $2\sin(x + \frac{\pi}{3}).$
(c) $f^{-1}(x) = -\frac{\pi}{3} + \sin^{-1}(\frac{x}{2}).$ $D_{f^{-1}} = R_f = [0, 2].$
(d) 1.
(e) $R_{gf^{-1}} = [0, 0.926].$
4. $f(-1, 2) = f(2, 8) = 0.$
 $f(3.6) = f(-0.4) = -1.$
5. (a) $f^{-1}(x) = 2 + \frac{1}{x-3}, x \in \mathbb{R}, x > 3.$
(c) $x = 3.62.$
6. (a) $f^{-1}(x) = -\sqrt{x} + k.$ $D_{f^{-1}} = (0, \infty).$
(b) $R_g = [-1, 4] \subseteq (-\infty, k) = D_f$ since $k > 5$. Hence fg exists.
(c) i. k^2 .
ii. $[(4 - k)^2, (1 + k)^2].$
7. (a) i. Yes. All horizontal lines $y = k, k \in \mathbb{R}$ cuts the curve $y = f(x)$ at most once. Hence f is a one-one function and f^{-1} exists.
ii. No. The horizontal line $y = 0$ cuts the curve $y = f(x)$ more than once. Hence f is not a one-one function and f^{-1} does not exist.
(b) i. $\frac{-1-\sqrt{13}}{2}.$
ii. $f^{-1}: x \mapsto -1 - \sqrt{x+4}, x \in \mathbb{R}, x > -3.$
(c) $R_f = (-3, \infty) \notin D_g = (-\infty, 3) \cup (3, \infty).$
(d) $g^{-1}(x) = \frac{3x+2}{x-3}.$

i. x. ii. $\frac{26}{5}$.