Function Problem Set

1. [ACJC Prelims 17 (modified)]

The function f is defined by

$$
f: x \mapsto \sin \left(x+\frac{1}{4}\right) \pi-\sin \left(x-\frac{3}{4}\right) \pi, \quad x \in \mathbb{R}, a \leq x \leq 1 .
$$

The function g is defined by

$$
g: x \mapsto \frac{2 x}{1-x}, \quad x \in \mathbb{R}, x \geq \frac{13}{5} .
$$

(a) Express $f(x)$ as a single trigonometric function in the form $b \cos (x-c) \pi$. Hence state the range of f and sketch the curve when $a=-1$, labelling the exact coordinates of the points where the curve crosses the x - and y - axes.
(b) State the least value of a such that f^{-1} exists, and define f^{-1} in similar form.
(c) When $a=-\frac{13}{4}$, show that $f g$ exists. Find the range of $f g$.
2. [AJC Prelims 17]

The function f is defined by

$$
f: x \mapsto \frac{\mathrm{e}^{x}-1}{\mathrm{e}-1} \quad \text { for } x \in \mathbb{R} .
$$

Sketch the graph of $y=f(x)$ and state the range of f.
Another function h is defined by

$$
h: x \mapsto \begin{cases}(x-1)^{2}+1 & \text { for } x \leq 1 \\ 1-\frac{|1-x|}{2} & \text { for } 1<x \leq 4\end{cases}
$$

Sketch the graph of $y=h(x)$ for $x \leq 4$ and explain why the composite function $f^{-1} h$ exists. Hence find the exact value of $\left(f^{-1} h\right)^{-1}(3)$. [7]

3. [DHS Prelims 17]

(a) Express $\sin x+\sqrt{3} \cos x$ as $R \sin (x+\alpha)$, where $R>0$ and α is an acute angle.

The function f is defined by

$$
f: x \mapsto \sin x+\sqrt{3} \cos x, \quad x \in \mathbb{R},-\frac{\pi}{3} \leq x \leq \frac{\pi}{6} .
$$

(b) Sketch the graph of $y=f(x)$.
(c) Find $f^{-1}(x)$, stating the domain of f^{-1}. On the same diagram as in part (b), sketch the graph of $y=f^{-1}(x)$, indicating the equation of the line of symmetry.
(d) ${ }^{* *}$ Using integration, find the area of the region bounded by the graph of f^{-1} and the axes.

The function g is defined by

$$
g: x \mapsto|\ln (x+2)|, \quad \text { for } x \in \mathbb{R}, x>-2
$$

(e) Show that the composite function $g f^{-1}$ exists, and find the range of $g f^{-1}$.

4. [HCI Prelims 17]

The floor function, denoted by $\lfloor x\rfloor$, is the greatest integer less than or equal to x. For example, $\lfloor-2.1\rfloor=-3$ and $\lfloor 3.5\rfloor=3$.

The function f is defined by

$$
f(x)= \begin{cases}\lfloor x\rfloor & \text { for } x \in \mathbb{R},-1 \leq x<2 \\ 0 & \text { for } x \in \mathbb{R}, 2 \leq x<3\end{cases}
$$

where $\lfloor x\rfloor$ denoted the greatest integer less than equal to x.
It is given that $f(x)=f(x+4)$.
(a) Find the values of $f(-1.2)$ and $f(3.6)$.
(b) Sketch the graph of $y=f(x)$ for $-2 \leq x<4$.
(c) Hence evaluate $\int_{-2}^{4} f(x) \mathrm{d} x$.

5. [IJC Prelims 17]

The function f is given by $f: x \mapsto 3+\frac{1}{x-2}$ for $x \in \mathbb{R}, x>2$.
(a) Find $f^{-1}(x)$ and state the domain of f^{-1}.
(b) Explain why the composite function f^{2} exists.
(c) Find the value of x for which $f^{2}(x)=x$. Explain why this value of x satisfies the equation $f(x)=f^{-1}(x)$.
6. [TPJC Prelims 17 (modified)]

The function f is defined by

$$
f: x \mapsto(x-k)^{2}, \quad x<k \text { where } k>5 .
$$

(a) Find $f^{-1}(x)$ and state the domain of f^{-1}.

The diagram shows the curve with equation $y=g(x)$ with domain $D_{g}=[-2,2]$. The curve crosses the x-axis at $x=-2, x=-1, x=1$ and $x=2$ and has turning points at $(-1.5,-1),(0,4)$ and $(1.5,-1)$.
(b) Explain why the composite function $f g$ exists.
(c) Find, in terms of k,
i. the value of $f g(-1)$,
ii. the range of $f g$.
7. The functions f and g are defined by

$$
\begin{array}{ll}
f: x \mapsto x^{2}+2 x-3 & \text { for } x \in \mathbb{R}, x<b, \\
g: x \mapsto \frac{3 x+2}{x-3}, & \text { for } x \in \mathbb{R}, x \neq 3 .
\end{array}
$$

(a) Determine, with reason, whether f^{-1} exists when
i. $b=-2$,
ii. $b=2$.
(b) For the value of b in (a) such that f^{-1} exists,
i. solve $f(x)=f^{-1}(x)$ exactly.
ii. define f^{-1}, stating clearly its domain.
(c) Determine, with reason, whether $g f$ exists when $b=0$.
(d) Find an expression for $g^{-1}(x)$.

Hence determine
i. $g^{2}(x)$.
ii. $g^{2017}(8)$.

Answers

1. (a) $b=2, c=\frac{1}{4}$.
$R_{f}=[-2,2],\left(-\frac{1}{4}, 0\right),\left(\frac{3}{4}, 0\right),(0, \sqrt{2})$.
(b) $a=\frac{1}{4}, f^{-1}: x \mapsto \frac{1}{\pi} \cos ^{-1} \frac{x}{2}+\frac{1}{4}, x \in[-\sqrt{2}, 2]$.
(c) $R_{f g}=[-2, \sqrt{2})$.
2. $1-\sqrt{\mathrm{e}^{2}+\mathrm{e}}$.
3. (a) $2 \sin \left(x+\frac{\pi}{3}\right)$.
(c) $f^{-1}(x)=-\frac{\pi}{3}+\sin ^{-1}\left(\frac{x}{2}\right) . \quad D_{f^{-1}}=R_{f}=[0,2]$.
(d) 1 .
(e) $R_{g f^{-1}}=[0,0.926]$.
4. $f(-1.2)=f(2.8)=0$. $f(3.6)=f(-0.4)=-1$.
5. (a) $f^{-1}(x)=2+\frac{1}{x-3}, x \in \mathbb{R}, x>3$.
(c) $x=3.62$.
6. (a) $f^{-1}(x)=-\sqrt{x}+k . D_{f^{-1}}=(0, \infty)$.
(b) $R_{g}=[-1,4] \subseteq(-\infty, k)=D_{f}$ since $k>5$. Hence $f g$ exists.
(c) i. k^{2}.
ii. $\left[(4-k)^{2},(1+k)^{2}\right]$.
7. (a) i. Yes. All horizontal lines $y=k, k \in \mathbb{R}$ cuts the curve $y=f(x)$ at most once. Hence f is a one-one function and f^{-1} exists.
ii. No. The horizontal line $y=0$ cuts the curve $y=f(x)$ more than once. Hence f is not a one-one function and f^{-1} does not exist.
(b) i. $\frac{-1-\sqrt{13}}{2}$.
ii. $f^{-1}: x \mapsto-1-\sqrt{x+4}, x \in \mathbb{R}, x>-3$.
(c) $R_{f}=(-3, \infty) \nsubseteq D_{g}=(-\infty, 3) \cup(3, \infty)$.
(d) $g^{-1}(x)=\frac{3 x+2}{x-3}$.
i. x.
ii. $\frac{26}{5}$.
