Integration Applications Problem Set

1. [ACJC Prelims 17]

Solve the inequality

$$
\frac{1}{x+a} \leq \frac{2 a}{x^{2}-a^{2}}
$$

leaving your answer in terms of a, where a is a positive real number.

Hence or otherwise find $\int_{2 a}^{4 a}\left|\frac{1}{x+a}-\frac{2 a}{x^{2}-a^{2}}\right| \mathrm{d} x$ exactly.
2. [ACJC Prelims 17]

A curve has parametric equations

$$
\begin{aligned}
& x=\cos t \\
& y=\frac{\sin 2 t}{2}
\end{aligned}
$$

where $\frac{\pi}{2} \leq t \leq \frac{3 \pi}{2}$.
(a) ${ }^{* *}$ Find the equation of the normal to C at the point P with parameter p.
The normal to C at the point where $t=\frac{2 \pi}{3}$ cuts the curve again. Find the coordinates of the point of intersection.
(b) Sketch C, clearly labelling the coordinates of the points where the curve crosses the x - and y - axes.
(c) Find the cartesian equation of C.

The region bounded by C is rotated through π radians about the x-axis. Find the exact volume of the solid formed.

3. [AJC Prelims 17]

(a) Show by integration that

$$
\int \mathrm{e}^{-2 x} \sin x \mathrm{~d} x=-\frac{2}{5} \mathrm{e}^{-2 x} \sin x-\frac{1}{5} \mathrm{e}^{-2 x} \cos x+A
$$

where A is an arbitrary constant
The diagram below shows a sketch of curve C, with parametric equations

$$
x=\mathrm{e}^{-t}, \quad y=\mathrm{e}^{-t} \sin t, \quad-\pi \leq t \leq \pi .
$$

Point P lies on C where $t=\frac{\pi}{2}$.
(b) Find the equation of the normal at P.
(c) Find the exact area bounded by the curve C for $0 \leq t \leq \pi$, the line $x=1$ and the normal at P.
(d) ${ }^{* *}$ The normal at P cuts the curve C again at two points where $t=q$ and $t=r$. Find the values of q and r.
4. [CJC Prelims 17]

The region bounded by the curve $y=\frac{1}{\sqrt{x}-2}$, the x-axis and the lines $x=9$ and $x=16$ is rotated through 2π radians about the x-axis. Use the substitution $t=\sqrt{x}$ to find the exact volume of the solid obtained.

5. [CJC Prelims 17]

The function f is defined by

$$
f: x \mapsto \frac{1}{3} \tan \left(\frac{x}{3}\right) \text { for } x \in \mathbb{R}, 0 \leq x<\frac{3 \pi}{2} .
$$

(a) Sketch the graph of $y=f(x)$, indicating clearly the vertical asymptote.
(b) State the equation of the line of reflection between the graphs of $y=f(x)$ and $y=f^{-1}(x)$, and hence sketch the graph of $y=f^{-1}(x)$ on the same diagram, indicating clearly the horizontal asymptote.

The solutions to the equation $f(x)=f^{-1}(x)$ are $x=0$ and $x=\alpha$, where $0<\alpha<\frac{3 \pi}{2}$.
(c) Using the diagram drawn, find, in terms of α, the area of the region bounded by the curves $y=f(x)$ and $y=f^{-1}(x)$.

Another function g is defined by

$$
g: x \mapsto \mathrm{e}^{x} \quad \text { for } x \in \mathbb{R}, x \geq-2 .
$$

(d) ${ }^{* *}$ Show that the composite function $g f$ exists and define $g f$ in a similar form.
6. [DHS Prelims 17 (modified)]

The curve C with equation

$$
y=\frac{x^{2}+(a-1) x-a-a}{x-1},
$$

where a is a constant, has an oblique asymptote $y=x+1$.
(a) Show that $a=1$. Hence sketch C, giving the equations of any asymptotes and the exact coordiantes of any points of intersection with the axes.
(b) The region bounded by C for $x>1$ and the lines $y=x+1, y=2$ and $y=4$ is rotated through 2π radians about the line $x=1$. By considering a translation of C or otherwise, find the volume of the solid of revolution formed.

7. [HCI Prelims 17]

(a) A curve is defined parametrically by the equations

$$
x=\sin t \quad \text { and } \quad y=\cos ^{3} t, \quad-\pi \leq t \leq \pi
$$

i. Show that the area enclosed by the curve is given by

$$
k \int_{0}^{\frac{\pi}{2}} \cos ^{4} t \mathrm{~d} t
$$

where k is a constant to be determined.
ii. Hence find the exact area enclosed by the curve.
(b) In the diagram, the region G is bounded by the curves $y=\frac{3 x-1}{x+1}$, $y=\sqrt{x}$ and the y-axis.

Find the exact volume of the solid generated when G is rotated about the y-axis through 2π radians.

8. [IJC Prelims 17]

Given that $f(x)=\sin 2 x+\cos 2 x$, express $f(x)$ as $R \sin (2 x+\alpha)$, where $R>0,0<\alpha<\frac{\pi}{2}$ and R and α are constants to be found.
(a) ** Describe a sequence of transformations that transforms the graph of $y=\sin x$ onto the graph of $y=f(x)$.
(b) Sketch the graph of $y=f(x)$ for $0 \leq x \leq \frac{3 \pi}{8}$, indicating clearly the exact coordinates of the maximum point and the end points of the graph.
(c) The region bounded by the curve $y=f(x)$, the line $x=\frac{\pi}{8}$ and both axes is rotated about the y-axis through 2π radians. Find the volume of the solid of revolution correct to 4 decimal places.
9. [IJC Prelims 17]

It is given that a curve C has parametric equations

$$
x=t^{2}-t, \quad y=\frac{1}{t^{2}+1} \quad \text { for } \quad-2 \leq t<2 .
$$

(a) Sketch C, indicating clearly the coordinates of the end points and the points where C cuts the y-axis.
(b) Find the equation of the tangent to C that is parallel to the y-axis.
(c) Express the area of the region bounded by C, the tangent found in part (b) and both axes, in the form

$$
\int_{a}^{b} f(t) \mathrm{d} t
$$

where the function f and the constants a and b are to be determined. Hence find this area, leaving your answer in exact form.

10. [TPJC Prelims 17 (modified)]

The diagram shows the curve with equation $y=\frac{x}{\sqrt{3-2 x-x^{2}}}$ for $0 \leq x<1$. The region bounded by the curve, the x-axis and the line $x=k, 0<k<1$ is denoted by S. It is given that n rectangles of equal width are drawn between $x=0$ and $x=k$.
(a) Show that the area of the first rectangle, $A_{1}=\frac{k^{2}}{n \sqrt{3 n^{2}-2 n k-k^{2}}}$.
(b) Show that the total area of all the rectangles i

$$
\sum_{r=1}^{n} \frac{r k^{2}}{n \sqrt{3 n^{2}-a n r k-b r^{2} k^{2}}},
$$

where a and b are constants to be determined.
(c) It is now given that $k=\sqrt{3}-1$. Use integration to find the actual area of region S. Hence state the exact value of

$$
\sum_{r=1}^{\infty} \frac{r k^{2}}{n \sqrt{3 n^{2}-a n r k-b r^{2} k^{2}}} .
$$

Answers

1. $x<-a$ or $a<x \leq 3 a$.
$\ln \frac{75}{64}$.
2. (a) $y=\frac{\sin p}{\cos 2 p} x+\frac{1}{2}(\sin 2 p-\tan 2 p)$.
$(-0.938,0.325)$.
(b) $(0,0),(-1,0)$.
(c) $y_{2 \pi}^{2}=\left(1-x^{2}\right) x^{2}$.
$\frac{2 \pi}{15}$.
3. (b) $y=-x+2 \mathrm{e}^{-\frac{\pi}{2}}$.
(c) $\frac{11}{10} \mathrm{e}^{-\pi}-2 \mathrm{e}^{-\frac{\pi}{2}}+\frac{7}{10}$.
(d) $q=-1.92, r=-1.01$.
4. $\pi(2 \ln 2+2)$.
5. (b) $y=x$.
(c) $\alpha^{2}+2 \ln \left(\cos \frac{\alpha}{3}\right)$.
(d) $g f: x \mapsto \mathrm{e}^{\frac{1}{3} \tan \frac{x}{3}}$ for $x \in \mathbb{R}, 0 \leq x<\frac{3 \pi}{2}$.
6. 9.75 .
7. (a) i. $k=4$.
ii. $\frac{3 \pi}{4}$.
(b) $\frac{29 \pi}{5}-8 \pi \ln 2$.
8. $f(x)=\sqrt{2}\left(2 x+\frac{\pi}{4}\right)$.
(a) A translation $\frac{\pi}{4}$ units in the negative x-direction.

A scaling with scale factor $\frac{1}{2}$ parallel to the x-axis.
A scaling with scale factor $\sqrt{2}$ parallel to the y-axis.
(b) 0.6506 .
9. (b) $x=-\frac{1}{4}$.
(c) $\ln \frac{8}{5}-\frac{\pi}{4}+\tan ^{-1} \frac{1}{2}$.
10. $\sqrt{3}-1-\frac{\pi}{6}$.

