Complex Numbers Problem Set

1. [ACJC Prelims 17]

(a) Given that $2 z+1=|w|$ and $2 w-z=4+8 i$, solve for w and z.
(b) Find the exact values of x and y, where $x, y \in \mathbb{R}$, such that $2 \mathrm{e}^{-\left(\frac{3+x+i y}{i}\right)}=1-i$.
2. [ACJC Prelims 17]

Given that $1+i$ is a root of the equation

$$
z^{3}-4(1+i) z^{2}+(-2+9 i) z+5-i=0,
$$

find the other roots of the equation.
3. [AJC Prelims 17]

The diagram below shows the line l that passes through the origin and makes an angle α with the positive real axis, where $0<\alpha<\frac{\pi}{2}$.

Point P represents the complex number z_{1} where $0<\arg z_{1}<\alpha$ and the length of $O P$ is r units. Point P is reflected in line l to produce point Q, which represents the complex number z_{2}.
Prove that $\arg z_{1}+\arg z_{2}=2 \alpha$.
Deduce that $z_{1} z_{2}=r^{2}(\cos 2 \alpha+i \sin 2 \alpha)$.
Let R be the point that represents the complex number $z_{1} z_{2}$. Given that $\alpha=\frac{\pi}{4}$, write down the cartesian equation of the locus of R as z_{1} varies.

4. [AJC Prelims 17]

The polynomial $P(z)$ has real coefficients. The equation $P(z)=0$ has a root $r \mathrm{e}^{i \theta}$, where $r>0$ and $0<\theta<\pi$. Write down a second root in terms of r and θ, and hence show that a quadratic factor of $P(z)$ is $z^{2}-2 r z \cos \theta+r^{2}$.
Let $P(z)=z^{3}+a z^{2}+15 z+18$ where a is a real number. One of the roots of the equation $P(z)=0$ is $3 \mathrm{e}^{i\left(\frac{2 \pi}{3}\right)}$. By expressing $P(z)$ as a product of two factors with real coefficients, find a and the other roots of $P(z)=0$.
Deduce the roots of the equation $18 z^{3}+15 z+a z+1=0$.

5. [CJC Prelims 17]

(a) The complex number z and w satisfy the simultaneous equations

$$
\begin{equation*}
z+w^{*}+5 i=10 \quad \text { and } \quad|w|^{2}=z+18+i . \tag{4}
\end{equation*}
$$

Find z and w.
(b) i. It is given that $2+i$ is a root of the equation

$$
z^{2}-5 z+7+i=0
$$

Find the second root of the equation in cartesian form, showing your working clearly.
ii. Hence find the roots of the equation $-i w^{2}+5 w+7 i-1=0$.
(c) The complex number z is given by $z=-a+a i$, where a is a positive real number.
i. It is given that $w=-\frac{\sqrt{2} z^{*}}{z^{4}}$. Express w in the form $r \mathrm{e}^{i \theta}$, in terms of a, where $r>0$ and $-\pi<\theta \leq \pi$.
ii. Find the two smallest positive whole number values of n such that $\operatorname{Re}\left(w^{n}\right)=0$.

6. [DHS Prelims 17 (modified)]

Do not use a graphic calculator in answering this question.

(a) It is given that $f(x)$ is a cubic polynomial with real coefficients. The diagram shows the curve with equation $y=f(x)$. What can be said about all the roots of the equation $f(x)=0$?

(b) The complex number z is given by $z=1+\mathrm{e}^{i \alpha}$.
i. Show that z can be expressed as $2 \cos \left(\frac{\alpha}{2}\right) \mathrm{e}^{i\left(\frac{\alpha}{2}\right)}$.
ii. Given that $\alpha=\frac{\pi}{3}$ and $w=-1-\sqrt{3} i$, find the exact modulus and argument of $\left(\frac{z}{w^{3}}\right)^{*}$.

7. [HCI Prelims 17]

The complex number z is given by $z=r \mathrm{e}^{i \theta}$, where $r>0$ and $0 \leq \theta \leq \pi$. It is given that the complex number $w=(-\sqrt{3}-i) z$.
(a) Find $|w|$ in terms of r, and $\arg w$ in terms of θ.
(b) Given that $\frac{z^{5}}{w^{*}}$ is purely imaginary, find the three smallest values of θ in terms of π.
8. [HCI Prelims 17]

The complex numbers z and w satisfy the following equations

$$
\begin{aligned}
2 z+3 w & =20, \\
w-z w^{*} & =6+22 i .
\end{aligned}
$$

(a) Find z and w in the form $a+b i$, where a and b are real, $a \neq 0$. [5]
(b) Show z and w on a single Argand diagram, indicating clearly their modulus. State the relationship between z and w with reference to the origin O.

9. [IJC Prelims 17 (modified)]

A graphic calculator is not to be used in answering this question.
The equation $w^{3}+p w^{2}+q w+30=0$, where p and q are real constants, has a root $w=2-i$. Find the values of p and q, showing your working.
10. [IJC Prelims 17]

The complex number z is such that $|z|=1$ and $\arg z=\theta$, where $0<\theta<\frac{\pi}{4}$.
(a) Mark a possible point A representing z on an Argand diagram. Hence mark the points B and C representing z^{2} and $z+z^{2}$ respectively on the same Argand diagram corresponding to point A.
(b) State the geometrical shape of $O A C B$.
(c) Express $z+z^{2}$ in polar form, $p \cos (q \theta)[\cos (k \theta)+i \sin (k \theta)]$ where p, q and k are constants to be determined.
11. [TPJC Prelims 17]

It is given that $z=-1-i \sqrt{3}$.
(a) Given that $\frac{(i z)^{n}}{z^{2}}$ is purely imaginary, find the smallest positive integer n

The complex umber w is such that $|w z|=4$ and $\arg \left(\frac{w^{*}}{z^{2}}\right)=-\frac{5 \pi}{6}$.
(b) Find the value of $|w|$ and the exact value of $\arg (w)$ in terms of π.

On an Argand diagram, points A and B represent the complex numbers w and z respectively.
(c) Referred to the origin O, find the exact value of the angle $O A B$ in terms of π. Hence or otherwise find the exact value of $\arg (z-w)$ in terms of π.
12. [TPJC Prelims 17]

The cubic equation $a z^{3}-31 z^{2}+212 z+b=0$, where a and b are real numbers, has a complex root $z=1-3 i$.
(a) Explain why the equation must have a real root.
(b) Find the values of a and b and the real root, showing your working clearly.
13. [TJC Prelims 17]
(a) In an Argand diagram, points P and Q represent the complex numbers $z_{1}=2+3 i$ and $z_{2}=i z_{1}$.
i. Find the area of the triangle $O P Q$, where O is the origin. [2]
ii. z_{1} and z_{2} are roots of the equation $\left(z^{2}+a z+b\right)\left(z^{2}+c z+d\right)=0$, where $a, b, c, d \in \mathbb{R}$. Find a, b, c and d.
(b) Without using a graphing calculator, find in exact form, the modulus and argument of $v^{*}=\left(\frac{\sqrt{3}+i}{-1+i}\right)^{14}$. Hence express v in exponential form.

Answers

1. (a) $z=2, w=3+4 i$.
(b) $x=-\frac{\pi}{4}-3, y=\frac{1}{2} \ln 2$.
2. $z=3+2 i$ or $z=i$.
3. $x=0, y>0$.
4. $a=5$.
$3 \mathrm{e}^{i\left(\frac{2 \pi}{3}\right)}, 3 \mathrm{e}^{i\left(\frac{-2 \pi}{3}\right)},-2=2 \mathrm{e}^{i \pi}$.
$\frac{1}{3} \mathrm{e}^{i\left(\frac{2 \pi}{3}\right)}, \frac{1}{3} \mathrm{e}^{i\left(-\frac{2 \pi}{3}\right)},-\frac{1}{2}$.
5. (a) $w=3+4 i, z=7-i$. $w=-4+4 i, z=14-i$.
(b) i. $3-i$.
ii. $w=1-2 i, w=-1-3 i$.
(c) i. $\frac{1}{2 a^{3}} \mathrm{e}^{i\left(-\frac{3 \pi}{4}\right)}$.
ii. 2,6 .
6. (a) There is exactly one real root. The other two roots are complex and they exist as a conjugate pair.
(b) $\frac{\sqrt{3}}{8},-\frac{\pi}{6}$.
7. (a) $2 r, \theta-\frac{5 \pi}{6}$.
(b) $\frac{\pi}{27}, \frac{4 \pi}{27}, \frac{7 \pi}{27}$.
8. (a) $w=6+2 i, z=1-3 i$.
(b) $\angle W O Z$ is 90°.
9. $p=2, q=-19$.
10. (b) Rhombus.
(c) $2 \cos \frac{\theta}{2}\left(\cos \frac{3 \theta}{2}+i \sin \frac{3 \theta}{2}\right)$.
11. (a) 5 .
(b) $|w|=2, \arg (w)=\frac{13 \pi}{6}$.
(c) $-\frac{3 \pi}{4}$.
12. (a) Since the coefficients are real, complex roots occur in conjugate pairs.
Since a cubic equation has three roots, the third root must be a real root.
(b) $a=25, b=190,-\frac{19}{25}$.
13. (a) i. $\frac{13}{2}$.
ii. $a=-4, b=13, c=6, d=13$.
(b) $v=2^{7} \mathrm{e}^{i \frac{\pi}{6}}$.
