## Differentiation Techniques - Exercise 4

(a) Techniques of Differentiation - Exponential Function

1. Differentiate the following with respect to $x$.
(a) $e^{2 x+3}$
(b) $\mathrm{e}^{2-7 x}$
(c) $3 e^{3-5 x}+4 x^{2}$
(d) $\frac{3}{\mathrm{e}^{\mathrm{x}}}$
(e) $e^{2 x}+\frac{1}{e^{2 x}}$
(f) $\frac{1}{6} \mathrm{e}^{\frac{1}{2} x}-2 \mathrm{e}^{-3 x}$
(g) $e^{\sqrt{x}}$
(h) $\frac{1}{\mathrm{e}^{\sqrt{2 x}}}$
2. Differentiate the following with respect to $x$.
(a) $\left(e^{2 x}+3\right)^{3}$
(b) $\mathrm{e}^{2 x+3} \sin 2 x$
(c) $\sqrt{2-e^{3 x}}$
(d) $e^{x^{2}+3 x}$
(e) $\frac{e^{\frac{1}{2} \mathrm{x}}}{\cos 4 \mathrm{x}}$
(f) $\frac{x+e^{2 x}}{e^{x}}$
(g) $e^{3-\sin 5 x}$
(h) $x^{3} e^{6 x}$

## Notes:

(a) $\frac{d}{d x}\left(e^{a x+b}\right)=a e^{a x+b}$
(b) $\frac{d}{d x}\left(e^{f(x)}\right)=f^{\prime}(x) e^{f(x)}$

## Examples:

(a) $\frac{d}{d x}\left(e^{5 x-2}\right)=5 e^{5 x-2}$
(b) $\frac{d}{d x}\left(e^{x^{2}+4 x}\right)=(2 x+4) e^{x^{2}+4 x}$
(c) $\frac{d}{d x}\left(e^{\cos x}\right)=(-\sin x) e^{\cos x}$
(b) Techniques of Differentiation - Logarithmic Function
3. Differentiate the following with respect to $x$.
(a) $\ln (5 x+3)$
(b) $\ln (4 x+2)^{6}$
(c) $\ln (2 x-3)(x+5)$
(d) $\ln (\sin 3 x-3 \cos 4 x)$
(e) $\ln \left(x+e^{x}\right)$
(f) $\ln \left(\sqrt{x^{2}-1}-x\right)$
(g) $\frac{\ln x}{x}$
(h) $x \ln x$
4. Differentiate the following with respect to $x$.
(a) $\ln \left(\frac{2 x-1}{1-5 x}\right)$
(b) $\ln \sqrt{\frac{4 x+1}{1-2 x}}$
(c) $\ln (\sec x)$
(d) $\ln (x \sin 2 x)$
(e) $x^{3} \ln \left(\cos ^{2} x\right)$
(f) $\ln \left(e^{\tan 2 x}+x\right)$
(g) $\sqrt{1+3 \ln 5 x}$

## Notes:

(a) $\frac{d}{d x}(\ln (a x+b))=\frac{a}{a x+b}$
(b) $\frac{d}{d x}(\ln (f(x)))=\frac{f(x)}{f(x)}$

## Examples:

## $\ln x^{r}=r \ln x$

- $\ln (x y)=\ln x+\ln y$
- $\ln \left(\frac{x}{y}\right)=\ln x-\ln y$
(a) $\frac{d}{d x}(\ln (5 x+2))=\frac{5}{5 x+2}$
(b) $\frac{d}{d x}(\ln \sqrt{3 x+1})=\frac{d}{d x}\left[\frac{1}{2} \ln (3 x+1)\right]=\frac{1}{2}\left(\frac{3}{3 x+1}\right)$
(c) $\frac{d}{d x} \ln (2 x+1)(4 x-1)=\frac{d}{d x}\left[\ln (2 x+1)+\ln (4 x-1)=\frac{2}{2 x+1}+\frac{4}{4 x-1}\right.$
(c) $\frac{d}{d x} \ln \left(\frac{2 x+1}{1-3 x}\right)=\frac{d}{d x}\left[\ln (2 x+1)-\ln (1-3 x)=\frac{2}{2 x+1}-\left(\frac{-3}{1-3 x}\right)\right.$


## Miscellaneous Exercise

1. Differentiate the following with respect to $x$
(i) $\ln \left(x^{2}+5\right)^{4}$
(ii) $\ln \left(\frac{4}{1-3 x^{2}}\right)$
(iii) $\ln \left[\left(x^{2}-1\right) \sqrt{x+1}\right]$
(iv) $\ln (\sin 3 x)$
(v) $e^{4 x} \sin (2 x+1)$
(vi) $x^{2} e^{x^{2}}$
(vii) $e^{-\cos x}$
(viii) $x^{3} \ln \left(\sin ^{3} x\right)$
[(i) $\frac{8 x}{x^{2}+5^{5}}$; (ii) $\frac{6 x}{1-3 x^{2}}$ ( (iii) $\frac{5 x-1}{2(x-1)(x+1)}$; (iv) $3 \cot 3 x$;
(v) $2 e^{4 x}[\cos (2 x+1)+2 \sin (2 x+1)]$; (vi) $2 x e^{x^{2}}\left(x^{2}+1\right)$; (vii) $\sin x e^{-\cos x}$;
(viii) $3 x^{2}\left(x \cot x+\ln \sin ^{3} x\right)$ ]
2. Differentiate the following with respect to $x$.
(a) $\ln \left(\frac{2 x+3}{\sqrt{x}}\right)$
(b) $x\left(x^{2}-1\right) \sin \frac{x}{2}$
3. Differentiate the following with respect to $x$.
(a) $\left(4-3 x^{2}\right)^{5}$
(b) $\ln \sqrt{\frac{6 x}{2 x-3}}$
4. Differentiate the following with respect to $x$.
(a) $\frac{2 x}{\sqrt{2 x+1}}$
(b) $\frac{e^{\sqrt{x}}}{\sec ^{2} x}$
5. Differentiate the following with respect to $x$.
(a) $\ln \left(\frac{x+2}{x-2}\right)$
(b) $\frac{e^{\sin 2 x}}{x+1}$
ers
6. (a) $\frac{2}{2 x+3}-\frac{1}{2 x}$
(b) $\left(3 \mathrm{x}^{2}-1\right) \sin \frac{x}{2}+\frac{1}{2}\left(x^{3}-x\right) \cos \frac{x}{2}$
7. (a) $-30 x\left(4-3 x^{2}\right)^{4}$
(b) $\frac{3}{2 x(3-2 x)}$
8. (a) $\frac{2(1+x)}{(2 x+1)^{\frac{3}{2}}}$
(b) $\frac{e^{\sqrt{x}}}{2 \sqrt{x}} \cos ^{2} x-2 e^{\sqrt{x}} \cos x \sin x$
9. (a) $\frac{-4}{(x+2)(x-2)}$
(b) $\frac{[2(x+1) \cos 2 x-1] e^{\sin 2 x}}{(x+1)^{2}}$
10. Given that $y=4 e^{-2 x}-1$, find
(i) the value of $y$ when $x=0$
(ii) the value of $\frac{d y}{d x}$ when $\frac{4}{e^{2 x}}=5$.

Sketch the graph of $y=4 e^{-2 x}-1$.
[(i) 3, (ii) -10 ]
7. Given that $y=e^{x} \cos x$, express $\frac{d y}{d x}$ in the form $k e^{x} \cos (x+\alpha)$, stating clearly suitable values for $k$ and $\alpha$.
8. Given that $y=x^{2} e^{3 x}$, write down an expression for $\frac{d y}{d x}$ and hence determine the values of $x$ for which $y$ is stationary.

$$
\left[x e^{3 x}(2+3 x) ; 0 \text { or }-\frac{2}{3}\right]
$$

## 9. O-Level November 2001

Given that $y=A e^{k x}$, where $A$ and $k$ are constants, find an expression for $\frac{d y}{d x}$. Hence find the value of $k$ and of $A$ for which $\frac{d y}{d x}-3 y=4 e^{2 x}$.

$$
[k=2 ; A=-4]
$$

## 10. St-nicks Prelim November 2008

Express $\frac{d}{d x}[\ln \cot 4 x]$ in the form $\frac{k}{\sin p x}$, where $k$ and $p$ are constants.

$$
\left[\frac{-8}{\sin 8 x}\right]
$$

11. Xinmin Secondary School SA2 2010

Given that $y=\ln \left(x^{2} e^{3 x-2}\right)$, where $x>0$, show that

$$
\frac{1}{x} \frac{d y}{d x}+\frac{d^{2} y}{d x^{2}}=\frac{3}{x}
$$

