Differentiation Techniques – Exercise 4

(a) Techniques of Differentiation – Exponential Function

1. Differentiate the following with respect to *x*.

(a)
$$e^{2x+3}$$
 (b) e^{2-7x}
(c) $3e^{3-5x} + 4x^2$ (d) $\frac{3}{e^x}$
(e) $e^{2x} + \frac{1}{e^{2x}}$ (f) $\frac{1}{6}e^{\frac{1}{2}x} - 2e^{-3x}$
(g) $e^{\sqrt{x}}$ (h) $\frac{1}{e^{\sqrt{2x}}}$

2. Differentiate the following with respect to *x*.

(a)	$(e^{2x}+3)^3$	(b)	e^{2x+3} sin2x
(c)	$\sqrt{2-e^{3x}}$	(d)	e^{x^2+3x}
(e)	$\frac{e^{\frac{1}{2}x}}{\cos 4x}$	(f)	$\frac{x+e^{2x}}{e^x}$
(g)	$e^{3-\sin 5x}$	(h)	<i>x</i> ³ e ^{6x}

Notes:

(a)
$$\frac{d}{dx}(e^{ax+b}) = ae^{ax+b}$$

(b) $\frac{d}{dx}(e^{f(x)}) = f'(x)e^{f(x)}$

Examples:

(a)	$\frac{d}{dx}(e^{5x-2}) = 5e^{5x-2}$
(b)	$\frac{d}{dx}(e^{x^2+4x}) = (2x+4)e^{x^2+4x}$

(c)
$$\frac{d}{dx}(e^{\cos x}) = (-\sin x)e^{\cos x}$$

(b) Techniques of Differentiation – Logarithmic Function

- 3. Differentiate the following with respect to *x*.
 - (b) $\ln(4x+2)^6$ (a) $\ln(5x+3)$ (c) $\ln(2x-3)(x+5)$ (d) $\ln(\sin 3x - 3\cos 4x)$
 - (e) $\ln(x + e^x)$ (f) $\ln(\sqrt{x^2 - 1} - x)$ (g) $\frac{\ln x}{x}$ (h) $x \ln x$
- 4. Differentiate the following with respect to *x*.
 - (b) $\ln \sqrt{\frac{4x+1}{1-2x}}$ (a) $\ln\left(\frac{2x-1}{1-5x}\right)$
 - (c) $\ln(\sec x)$ (d) $\ln(x \sin 2x)$
 - (e) $x^3 \ln(\cos^2 x)$ (f) $\ln(e^{\tan 2x} + x)$
 - (q) $\sqrt{1+3\ln 5x}$

Notes:

Examples:

(

(a) $\frac{d}{dx}(\ln(ax+b)) = \frac{a}{ax+b}$ (b) $\frac{d}{dx}\left(\ln(f(x))\right) = \frac{f'(x)}{f(x)}$

 $\ln x^r = r \ln x$ (a) $\frac{d}{dx}(\ln(5x+2)) = \frac{5}{5x+2}$

• $\ln(xy) = \ln x + \ln y$

$$\ln\left(\frac{x}{y}\right) = \ln x - \ln y$$

(b)
$$\frac{d}{dx} \left(\ln \sqrt{3x+1} \right) = \frac{d}{dx} \left[\frac{1}{2} \ln(3x+1) \right] = \frac{1}{2} \left(\frac{3}{3x+1} \right)$$

c)
$$\frac{d}{dx}\ln(2x+1)(4x-1) = \frac{d}{dx}\left[\ln(2x+1) + \ln(4x-1)\right] = \frac{2}{2x+1} + \frac{4}{4x-1}$$

(c)
$$\frac{d}{dx} \ln\left(\frac{2x+1}{1-3x}\right) = \frac{d}{dx} \left[\ln(2x+1) - \ln(1-3x)\right] = \frac{2}{2x+1} - \left(\frac{-3}{1-3x}\right)$$

All Rights Reserved.

Miscellaneous Exercise

1. Differentiate the following with respect to x_i

(i) $\ln(x^2 + 5)^4$ (ii) $\ln\left(\frac{4}{1-3x^2}\right)$ (iii) $\ln\left[(x^2 - 1)\sqrt{x+1}\right]$ (iv) $\ln(\sin 3x)$ (v) $e^{4x}\sin(2x+1)$ (vi) $x^2e^{x^2}$ (vii) $e^{-\cos x}$ (viii) $x^3\ln(\sin^3 x)$ [(i) $\frac{8x}{x^2+5'}$ (ii) $\frac{6x}{1-3x^{2'}}$ (iii) $\frac{5x-1}{2(x-1)(x+1)'}$ (iv)3 cot 3x;

 $(v)2e^{4x}[\cos(2x+1)+2\sin(2x+1)]; (vi)2xe^{x^2}(x^2+1); (vi)\sin xe^{-\cos x};$ $(viii) 3x^2(x\cot x + \ln \sin^3 x)]$

- 2. Differentiate the following with respect to *x*. (a) $\ln\left(\frac{2x+3}{\sqrt{x}}\right)$ (b) $x(x^2-1)\sin\frac{x}{2}$
- 3. Differentiate the following with respect to *x*. (a) $(4-3x^2)^5$ (b) $\ln \sqrt{\frac{6x}{2x-3}}$
- 4. Differentiate the following with respect to *x*. (a) $\frac{2x}{\sqrt{2x+1}}$ (b) $\frac{e^{\sqrt{x}}}{\sec^2 x}$
 - (a) $\frac{1}{\sqrt{2x+1}}$ (b) $\frac{1}{\sec^2 x}$ Differentiate the following with respect to *x*.

(a)
$$\ln\left(\frac{x+2}{x-2}\right)$$
 (b) $\frac{e^{\sin 2}}{x+1}$

Answers:

5.

2. (a)
$$\frac{2}{2x+3} - \frac{1}{2x}$$
 (b) $(3x^2 - 1)\sin\frac{x}{2} + \frac{1}{2}(x^3 - x)\cos\frac{x}{2}$
3. (a) $-30x(4 - 3x^2)^4$ (b) $\frac{3}{2x(3-2x)}$
4. (a) $\frac{2(1+x)}{(2x+1)^{\frac{3}{2}}}$ (b) $\frac{e^{\sqrt{x}}}{2\sqrt{x}}\cos^2 x - 2e^{\sqrt{x}}\cos x \sin x$
5. (a) $\frac{-4}{(x+2)(x-2)}$ (b) $\frac{[2(x+1)\cos 2x-1]e^{\sin 2x}}{(x+1)^2}$

7. Given that $y = e^x \cos x$, express $\frac{dy}{dx}$ in the form $ke^x \cos(x + \alpha)$, stating clearly suitable values for k and α .

 $[\sqrt{2}; \frac{\pi}{4}]$

- 8. Given that $y = x^2 e^{3x}$, write down an expression for $\frac{dy}{dx}$ and hence determine the values of x for which y is stationary. $[xe^{3x}(2+3x); 0 \text{ or } -\frac{2}{\pi}]$
- 9. **O-Level November 2001** Given that $y = Ae^{kx}$, where A and k are constants, find an expression for $\frac{dy}{dx}$. Hence find the value of k and of A for which $\frac{dy}{dx} - 3y = 4e^{2x}$. [k = 2; A = -4]
- 10. **St-nicks Prelim November 2008** Express $\frac{d}{dx}[ln \cot 4x]$ in the form $\frac{k}{\sin px}$, where k and p are constants.

 $\left[\frac{-8}{\sin 8x}\right]$

11. Xinmin Secondary School SA2 2010

Given that $y = \ln(x^2 e^{3x-2})$, where x > 0, show that

1 dy	d^2y	_ 3
x dx	dx^2	\overline{x}

