§3. Discrete Random Variables and Binomial Distribution: Summary Notes

Kelvin Soh
Last updated April 13, 2017.
http://www.mathelement.com/

2.1 Discrete Random Variables

- A discrete random variable is a random variable that takes only a countable number of values.
- $\sum P(X=x)=1$ for all discrete random variables X.
- The probability distribution of a discrete r.v. can be summarized in a table or a function.
- The mean, or expectation of a discrete r.v. X is given by $\mu=\mathrm{E}(X)=\sum x P(X=x)$.
- $\mathrm{E}\left(X^{2}\right)=\sum x^{2} P(X=x)$.
- The variance or a discrete r.v. X is given by

$$
\sigma^{2}=\operatorname{Var}(X)=\mathrm{E}\left(X^{2}\right)-(\mathrm{E}(X))^{2} .
$$

- $\mathrm{E}(a X \pm b Y)=a \mathrm{E}(X) \pm b \mathrm{E}(Y)$.
- $\mathrm{E}(a X+b)=a \mathrm{E}(X)+b$.
- $\mathrm{E}\left(X_{1}+\cdots+X_{n}\right)=n \mathrm{E}(X)$.
- $\mathrm{E}(n X)=n \mathrm{E}(X)$.
- $\operatorname{Var}(a X \pm b Y)=a^{2} \operatorname{Var}(X)+b^{2} \operatorname{Var}(Y)$.
- $\operatorname{Var}(a X+b)=a^{2} \operatorname{Var}(X)$.
- $\operatorname{Var}\left(X_{1}+\cdots+X_{n}\right)=n \operatorname{Var}(X)$.
- $\operatorname{Var}(n X)=n^{2} \operatorname{Var}(X)$.

Remark: The variance formulas assume independence between X and Y.

2.2 Binomial Basics.

- The conditions for a random variable to be modeled by a binomial distribution are:
- There are n fixed trials.
- For each trial, there is a notion of "success" with probability p. The outcome of each trial must be either "success" or "failure".
- p is the same for each trail.
- The outcomes of each trial are independent.
- In that case, we write $X \sim B(n, p)$.
- Some formulas associated with a binomial distribution (in MF15):
- $P(X=x)=\binom{n}{x} p^{x}(1-p)^{n-x}$.
- The mean of $X, \mathrm{E}(X)=n p$.
- The variance of $X, \operatorname{Var}(X)=n p(1-p)$.
- Sometimes the probability of failure is denoted by $q=1-p$, the mean by μ and the variance by σ^{2}. The standard deviation is denoted by σ.

2.3 Using the GC: binompdf and binomcdf.

- The GC function BinompdF gives us the probability of $P(X=x)$.
- The GC function Binomcdf gives us the probability of $P(X \leq x)$.
- For all other inequality relations, we can always convert to the cdf form by appropriate manipulation. For example,
- $P(X<5)=$
- $P(2 \leq X<7)=$
$-P(X \geq 12)=$
- $P(X>6)=$

2.4 Using the GC: table and graphs.

- The Binompdf and Binomcdf functions allow us to calculate probabilities when n, p and x are known.
- Sometimes, a probability will be given and we have to work backwards to obtain n, p or x.
- For some questions, we will be guided to make use of the binomial distribution formula and some algebra to solve for our unknowns. Otherwise,
- n and x are integers so a table method can be used.
- p is a real number so a graphical method needs

