DRV Example

The pdf for X (both X_{1} and X_{2} has the same distribution):

x	1	2	3	4	5	6
$P(X=x)$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$

Now $W=\left|X_{1}-X_{2}\right|$. What is the meaning of $\left|X_{1}-X_{2}\right|$? It means that we take a random number for x_{1}, for example, $x_{1}=3$, and a randomly number for x_{2}, for example, $x_{2}=5$. Then $w=\left|x_{1}-x_{2}\right|=2$. This is associated with a certain probability ($\frac{1}{36}$ for this example). To work out the probabilities for W, a table of outcomes is useful.

	1	2	3	4	5	6
1	0	1	2	3	4	5
2	1	0	1	2	3	4
3	2	1	0	1	2	3
4	3	2	1	0	1	2
5	4	3	2	1	0	1
6	5	4	3	2	1	0

This gives us the following pdf for W :

w	0	1	2	3	4	5
$P(W=w)$	$\frac{6}{36}$	$\frac{10}{36}$	$\frac{8}{36}$	$\frac{6}{36}$	$\frac{4}{36}$	$\frac{2}{36}$

Now try finding $E(W)$.
Next we have $Q=X_{1}-X_{2}$. This is similar to W, except that, without a modulus, Q can take negative numbers. Let's try to find the pdf for Q :

q	-5	-4	\ldots	4	5
$P(Q=q)$	$\frac{1}{36}$	$\frac{2}{36}$	\ldots	$\frac{2}{36}$	$\frac{1}{36}$

Let's find $E\left(Q^{2}\right), E\left(W^{2}\right), \operatorname{Var}(Q)$ and $\operatorname{Var}(W)$ to answer the questions.

Answers

(ii) $E(W)=\frac{35}{18}$.
(iii) $E\left(W^{2}\right)=\frac{35}{6}=E\left(Q^{2}\right)$.
(iv) Since $E(W)=\frac{35}{18}$ and $E(Q)=0, \operatorname{Var}(W)=\frac{665}{324} \neq \frac{35}{6}=\operatorname{Var}(Q)$.

