DRV Example

The pdf for X (both X_1 and X_2 has the same distribution):

x	1	2	3	4	5	6
P(X=x)	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$

Now $W = |X_1 - X_2|$. What is the meaning of $|X_1 - X_2|$? It means that we take a random number for x_1 , for example, $x_1 = 3$, and a randomly number for x_2 , for example, $x_2 = 5$. Then $w = |x_1 - x_2| = 2$. This is associated with a certain probability $\left(\frac{1}{36}\right)$ for this example. To work out the probabilities for W, a table of outcomes is useful.

	1	2	3	4	5	6
1	0	1	3 2 1 0	3	4	5
2	1	0	1	2	3	4
3	2				2	3
4	3	2	1	0	1	2
5	4	3	2	1	0	1
6	5	4	3	2	1	0

This gives us the following pdf for *W*:

w	0	1	2	3	4	5
P(W=w)	<u>6</u> 36	10 36	<u>8</u> 36	<u>6</u> 36	$\frac{4}{36}$	$\frac{2}{36}$

Now try finding E(W).

Next we have $Q = X_1 - X_2$. This is similar to W, except that, without a modulus, Q can take negative numbers. Let's try to find the pdf for Q:

q	-5	-4	 4	5
P(Q=q)	$\frac{1}{36}$	$\frac{2}{36}$	 $\frac{2}{36}$	$\frac{1}{36}$

Let's find $E(Q^2)$, $E(W^2)$, Var(Q) and Var(W) to answer the questions.

Answers

- (ii) $E(W) = \frac{35}{18}$.
- (iii) $E(W^2) = \frac{35}{6} = E(Q^2)$.
- (iv) Since $E(W) = \frac{35}{18}$ and E(Q) = 0, $Var(W) = \frac{665}{324} \neq \frac{35}{6} = Var(Q)$.