Differentiation applications: a summary

KELVIN SOH

LAST UPDATED APRIL 3, 2020.

http://www.adotb.xyz/

5.1 Equations of tangents

- Step 1: differentiate given equation to find $\frac{dy}{dx}$.
- Step 2: figure out what the *x* and *y* coordinates of the point is.
- Step 3: find the gradient of the tangent, *m*, by substituting *x* into $\frac{dy}{dx}$.
- Step 4: Use the formula $y y_1 = m(x x_1)$ where the point is (x_1, y_1) .
- Step 5: Rearrange to make y the subject.

5.2 Increasing/decreasing functions

- A curve is **increasing** if $\frac{\mathrm{d}y}{\mathrm{d}x} > 0$.
- A curve is **decreasing** if $\frac{dy}{dx} < 0$.

5.3 Stationary/maximum/minimum points

- Step 1: differentiate the given equation to find $\frac{dy}{dx}$.
- Step 2: at **stationary/maximum,minimum** points, $\frac{dy}{dx} = 0$.
- Step 3: solve for x.
- Step 4: answer the question (do they want *x*? Coordinates?)
- Step 5: for maximum/minimum points, we have to test for the **nature** (refer to next subsection).

5.3.1 Testing for nature of stationary points: Method 1 (first order test)

x	a ⁻	a	a^+
$\frac{\mathrm{d}y}{\mathrm{d}x}$	< 0	0	>0
Shape	\		/

x	a ⁻	a	a^+
$\frac{\mathrm{d}y}{\mathrm{d}x}$	>0	0	>0
Shape	/	_	/

x	a ⁻	a	a^+
$\frac{\mathrm{d}y}{\mathrm{d}x}$	>0	0	< 0
Shape	/		/

Minimum point

Stationary point of inflexion

Maximum

5.3.2 Testing for nature of stationary points: Method 2 (second order test)

- Differentiate one more time to get $\frac{d^2 y}{dx^2}$.
- Sub in our value of *x*.
- If $\left| \frac{d^2 y}{dx^2} > 0 \right|$, we have a **minimum**.
- If $\frac{d^2y}{dx^2} < 0$, we have a **maximum**.
- If $\frac{d^2y}{dx^2} = 0$, no conclusion (we have to use the first order test instead).

5.4 Maxima/minima (problem sums)

• Step 1: To maximise/minimise *V*, for example, we find a formula for *V* in terms of just one variable (*x* for example).

2

- Step 2: Differentiate to find $\frac{dV}{dx}$.
- Step 3: $\left| \frac{\mathrm{d}V}{\mathrm{d}x} = 0 \right|$.
- Step 4: Solve for *x*.
- Step 5: Answer the question (do we want *x*? *V*? *A*?)
- Step 6: Test that it is indeed a maximum/minimum.

5.5 Rates of change

- The rate of change of V is given by $\frac{dV}{dt}$.
- If $\frac{dV}{dt} > 0$, V is increasing. If $\frac{dV}{dt} < 0$, V is decreasing.
- Step 1: Find a formula for V in terms of just one variable (x for example).
- Step 2: Differentiate to find $\frac{dV}{dx}$.
- Step 3: Use the chain rule equation: $\frac{dV}{dt} = \frac{dV}{dx} \times \frac{dx}{dt}$.
- Step 4: Sub in given values and answer the question.