Differentiation applications: a summary

Kelvin Soh
Last updated April 3, 2020.
http://www.adotb.xyz/

5.1 Equations of tangents

- Step 1: differentiate given equation to find $\frac{\mathrm{d} y}{\mathrm{~d} x}$.
- Step 2: figure out what the x and y coordinates of the point is.
- Step 3: find the gradient of the tangent, m, by substituting x into $\frac{\mathrm{d} y}{\mathrm{~d} x}$.
- Step 4: Use the formula $y-y_{1}=m\left(x-x_{1}\right)$ where the point is $\left(x_{1}, y_{1}\right)$.
- Step 5: Rearrange to make y the subject.

5.2 Increasing/decreasing functions

- A curve is increasing if $\frac{\mathrm{d} y}{\mathrm{~d} x}>0$.
- A curve is decreasing if $\frac{\mathrm{d} y}{\mathrm{~d} x}<0$.

5.3 Stationary/maximum/minimum points

- Step 1: differentiate the given equation to find $\frac{\mathrm{d} y}{\mathrm{~d} x}$.
- Step 2: at stationary/maximum,minimum points, $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$.
- Step 3: solve for x.
- Step 4: answer the question (do they want x ? Coordinates?)
- Step 5: for maximum/minimum points, we have to test for the nature (refer to next subsection).
5.3.1 Testing for nature of stationary points: Method 1 (first order test)

x	a^{-}	a	a^{+}
$\frac{\mathrm{d} y}{\mathrm{~d} x}$	<0	0	>0
Shape	\searrow	-	\nearrow

Minimum point

x	a^{-}	a	a^{+}
$\frac{\mathrm{d} y}{\mathrm{~d} x}$	>0	0	>0
Shape	$/$	-	$/$

Stationary point of inflexion

x	a^{-}	a	a^{+}
$\frac{\mathrm{d} y}{\mathrm{~d} x}$	>0	0	<0
Shape	\nearrow	-	\searrow

Maximum

5.3.2 Testing for nature of stationary points: Method 2 (second order test)

- Differentiate one more time to get $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$.
- Sub in our value of x.
- If $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}>0$, we have a minimum.
- If $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}<0$, we have a maximum.
- If $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=0$, no conclusion (we have to use the first order test instead).

5.4 Maxima/minima (problem sums)

- Step 1: To maximise/minimise V, for example, we find a formula for V in terms of just one variable (x for example).
- Step 2: Differentiate to find $\frac{\mathrm{d} V}{\mathrm{~d} x}$.
- Step 3: $\frac{\mathrm{d} V}{\mathrm{~d} x}=0$.
- Step 4: Solve for x.
- Step 5: Answer the question (do we want x ? V ? A ?)
- Step 6: Test that it is indeed a maximum/minimum.

5.5 Rates of change

- The rate of change of V is given by $\frac{\mathrm{d} V}{\mathrm{~d} t}$.
- If $\frac{\mathrm{d} V}{\mathrm{~d} t}>0, V$ is increasing. If $\frac{\mathrm{d} V}{\mathrm{~d} t}<0, V$ is decreasing.
- Step 1: Find a formula for V in terms of just one variable (x for example).
- Step 2: Differentiate to find $\frac{\mathrm{d} V}{\mathrm{~d} x}$.
- Step 3: Use the chain rule equation: $\frac{\mathrm{d} V}{\mathrm{~d} t}=\frac{\mathrm{d} V}{\mathrm{~d} x} \times \frac{\mathrm{d} x}{\mathrm{~d} t}$.
- Step 4: Sub in given values and answer the question.

