
Integration – Exercise 1 
(a)  Techniques of Integration – Indefinite Integral 

1. Integrate the following with respect to x. 

 (a) 2x3 (b) 2 + x  

 (c) 3x2 – 2x + 3 (d) 
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2. Integrate the following with respect to x. 

 (a) (2 + 3x)3 (b) (2x + 5)4  

 (c) (1 – 3x)5 (d) (9x + 1)–3  

 (e) 
3)72(

1
x

 (f) 
x43

2


 

 (g) 
163

4
x

 

Notes: 
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 + c, n ≠ –1, a ≠ 0 

Examples 

(a) 3 	 	  

(b) 3 2 	 	 2 	   

(c) 2 3 	 	  

(b)  Techniques of Integration – Definite Integral 

3. Evaluate the following definite integrals. 
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 [(a)  24 (b) 1.83 (c) 31 (d) 7 (e)  (f) ] 

Example 

3 5   

= 5   

= 5 4 5 1  
 
Notes: 
(a) 0  

(b)  

(c)  
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(c)  Integration as the Reverse Process of Differentiation 

4. Find the equation of the curve which passes through the point (2, 4) and 
for which 3 1 . 

[ 2] 

5. The gradient of a curve is 6(4x – 1)2 and the curve passes through the 
origin. Find the equation of the curve. 

[ 4 1 ] 
 
6. The curve for which 3 , where k is a constant, has a turning 

point of (–2, 6). Find 
 (a) the value of k 
 (b) the equation of the curve. 

 [(a) 12 (b) 12 10] 

7. The curve for which 2
 
where a is a constant is such that the 

normal at (1, 5) cuts the x-axis at (6, 0). Find the value of a and the 
equation of the curve. 

[a = 1, 5] 

8. The curve for which 5, where k is a constant is such that the 
tangent at (2, 2) passes through the origin. Determine 

 (a) the value of k 
 (b) the equation of the curve. 

[(a) 3 (b) 5 6] 
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10. Show that 
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11. Show that  
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13. Show that tan 3 tan sec  and hence evaluate .  

[ ] 

14. Given that y = x lnx, find an expression for .  
 Hence find  dxxln . 

 [ ln 	] 
 
15. Given that y = x2lnx, find an expression for .  

 Hence find  dxxx ln . 

[ ln ] 

16. Given that y = x3 lnx, find an expression for .  

 Hence find  dxxx ln2 . 

[ ln ] 

17. Given that  = 3, evaluate 

(a)  (b)  

(c) 2 5  
 

[(a) 0 (b) –3 (c) 16] 
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