Integration - Exercise 1
(a) Techniques of Integration - Indefinite Integral

1. Integrate the following with respect to x.

@ 2¢ (b) 2+x
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2. Integrate the following with respect to x.
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Examples

(@) [3x5dx = %+ c

(b) J(x3+3x+2)dx= §+3sz+2x+ c

(2x+3)11

(© [@x+3)Pdx = @)
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(b) Techniques of Integration — Definite Integral
3. Evaluate the following definite integrals.
1
@ [(8x—4ydx
-2
8 1
(b) J'1 x 2 dx
12

(€) j(ex —3Jx)dx

1
0

C) J(sz —2X +5)dx
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® J(Xz —ijdx
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[(a) — 24 (b) 1.83 () 31 (d) 7 (&) = () 5]

Example

ff(3x +5)dx
3x? 4
z 1

+ Sx]

= 22 + 509)] - X2+ 500)

Notes:
@ [ fe)dx=0

b) [ f)dx = — [} f(x)dx
© [7 fOodx+ [; fG)dx = [£ f(x)dx
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(c) Integration as the Reverse Process of Differentiation

4. Find the equation of the curve which passes through the point (2, 4) and
for which Z—z =x(3x—1).

ly =% —2x2 2]

5. The gradient of a curve is 6(4x — 1)? and the curve passes through the
origin. Find the equation of the curve.
-1 1342
y=;0@x-1)°+]
6. The curve for which Z—z = 3x2 + k, where k is a constant, has a turning
point of (-2, 6). Find
(@) thevalue of k
(b) the equation of the curve.
[(@) -12 (b) y = x3 — 12x — 10]

7. The curve for which Z—z = 2x + awhere g is a constant is such that the

normal at (1, 5) cuts the x-axis at (6, 0). Find the value of @ and the
equation of the curve.
[a=-1,y=x?—x+5]

8. The curve for which Z—z = kx — 5, where k is a constant is such that the
tangent at (2, 2) passes through the origin. Determine
(@) thevalue of k

(b) the equation of the curve.
[(a) 3 (b) y = 2x? — 5x + 6]

d 1 2
9. Given that —In(x+1)=——_H luat 1
iven tha i (x+1) i1 enceevauaej dx

1
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3
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10. Show that di(X\/1+ 2X2):L2+1. Hence evaIuateJ‘ 4% +1 dx-
X Vax? +1 ) Tt
(6]
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11.

12.

13.

14.

15.

16.

17.

d 3X+2
Show that — |xvX+1)=
dX( ) 20X +1

8
. Hence evaluate.[ 3X+2 .
3 VX+1

4

d X 1 2 2
Show that — =——— . Hence evaluate.[ < | dx
dx\1+2x) (@+2x) 1+ 2X

1

d L 2
Show that ——tan® x = 3 tan? x sec? x and hence evaluate [ (—Z‘:i) dx.

Given that y = xInx, find an expression for Z—i.
Hence find Ilnx dx.

[y=xlnx—x+c]

Given that y = x?Inx, find an expression for Z—z.
Hence find J'xlnx dx.

ly = %lenx —ixz + ¢]

Given that y = x*Inx, find an expression for Z—z.
Hence find J.XZ Inx dx.

[y =3x%Inx —x% + ]
Given that [ f(x)dx = [ f(x)dx = 3, evaluate
@ J, f)dx+ [} f()dx (b) J; fx)dx
© J7[2f(x) + 5)dx

[(@) 0 (b) =3 (c) 16]

o?
All Rights Reserved. habltct



