Integration - Exercise 1

(a) Techniques of Integration - Indefinite Integral

1. Integrate the following with respect to x.
(a) $2 x^{3}$
(b) $2+x$
(c) $3 x^{2}-2 x+3$
(d) $\frac{1}{2 x^{5}}$
(e) $\frac{3}{x^{2}}$
(f) $x^{2}+\frac{1}{\sqrt{x}}$
(g) $x\left(1+\frac{1}{x^{3}}\right)$
(h) $\frac{x^{2}+1}{2 x^{2}}$
(i) $\sqrt{x}(\sqrt{x}+1)$
(j) $(2 x-\sqrt{x})^{2}$
2. Integrate the following with respect to x.
(a) $(2+3 x)^{3}$
(b) $(2 x+5)^{4}$
(c) $(1-3 x)^{5}$
(d) $(9 x+1)^{-3}$
(e) $\frac{1}{(2 x-7)^{3}}$
(f) $\frac{2}{\sqrt{3-4 x}}$
(g) $\frac{4}{3 \sqrt{6 x-1}}$
$\int a x^{n} d x=\frac{a^{n+1}}{\mathrm{n}+1}+c, n \neq-1$
$\int(a x+b)^{\mathrm{n}} d x=\frac{(\mathrm{ax}+\mathrm{b})^{n+1}}{\mathrm{a}(\mathrm{n}+1)}+c, n \neq-1, a \neq 0$

Notes:

Examples

(a) $\int 3 x^{5} d x=\frac{3 x^{6}}{6}+c$
(b) $\int\left(x^{3}+3 x+2\right) d x=\frac{x^{4}}{4}+\frac{3 x^{2}}{2}+2 x+c$
(c) $\int(2 x+3)^{10} d x=\frac{(2 x+3)^{11}}{11(2)}+c$

(b) Techniques of Integration - Definite Integral

3. Evaluate the following definite integrals.
(a) $\int_{-2}^{1}(8 x-4) d x$
(b) $\int_{1}^{8} \frac{1}{2} x^{-\frac{1}{2}} d x$
(c) $\int_{1}^{4}(6 x-3 \sqrt{x}) d x$
(d) $\int_{-1}^{0}\left(3 x^{2}-2 x+5\right) d x$
(e) $\int_{1}^{-1}\left(\sqrt{x}-\frac{2}{\sqrt{x}}\right) d x$
(f) $\int_{1}^{2}\left(x^{2}-\frac{4}{x^{2}}\right) d x$
[(a) - 24 (b) 1.83 (c) 31 (d) 7 (e) $\frac{2}{3}$ (f) $\frac{1}{3}$]

Example

$\int_{1}^{4}(3 x+5) d x$
$=\left[\frac{3 x^{2}}{2}+5 x\right]_{1}^{4}$
$=\left[\frac{3(4)^{2}}{2}+5(4)\right]-\left[\frac{3(1)^{2}}{2}+5(1)\right]$
Notes:
(a) $\int_{a}^{a} f(x) d x=0$
(b) $\int_{a}^{b} f(x) d x=-\int_{b}^{a} f(x) d x$
(c) $\int_{a}^{b} f(x) d x+\int_{b}^{c} f(x) d x=\int_{a}^{c} f(x) d x$
(c) Integration as the Reverse Process of Differentiation
4. Find the equation of the curve which passes through the point $(2,4)$ and for which $\frac{d y}{d x}=x(3 x-1)$.

$$
\left[y=x^{3}-\frac{1}{2} x^{2}-2\right]
$$

5. The gradient of a curve is $6(4 x-1)^{2}$ and the curve passes through the origin. Find the equation of the curve.

$$
\left[y=\frac{1}{2}(4 x-1)^{3}+\frac{1}{2}\right]
$$

6. The curve for which $\frac{d y}{d x}=3 x^{2}+k$, where k is a constant, has a turning point of $(-2,6)$. Find
(a) the value of k
(b) the equation of the curve.

$$
\text { [(a) } \left.-12 \text { (b) } y=x^{3}-12 x-10\right]
$$

7. The curve for which $\frac{d y}{d x}=2 x+a$ where a is a constant is such that the normal at $(1,5)$ cuts the x-axis at $(6,0)$. Find the value of a and the equation of the curve.

$$
\left[a=-1, y=x^{2}-x+5\right]
$$

8. The curve for which $\frac{d y}{d x}=k x-5$, where k is a constant is such that the tangent at $(2,2)$ passes through the origin. Determine
(a) the value of k
(b) the equation of the curve.

$$
\text { [(a) } \left.3 \text { (b) } y=\frac{3}{2} x^{2}-5 x+6\right]
$$

9. Given that $\frac{d}{d x} \ln (x+1)=\frac{1}{x+1}$. Hence evaluate $\int_{1}^{2} \frac{1}{x+1} d x$.
10. Show that $\frac{d}{d x}(x \sqrt{x+1})=\frac{3 x+2}{2 \sqrt{x+1}}$. Hence evaluate $\int_{3}^{8} \frac{3 x+2}{\sqrt{x+1}} d x$
11. Show that $\frac{d}{d x}\left(\frac{x}{1+2 x}\right)=\frac{1}{(1+2 x)^{2}}$. Hence evaluate $\int_{1}^{4}\left(\frac{2}{1+2 x}\right)^{2} d x$.
12. Show that $\frac{d}{d x} \tan ^{3} x=3 \tan ^{2} x \sec ^{2} x$ and hence evaluate $\int_{0}^{\frac{\pi}{4}}\left(\frac{\tan x}{\cos x}\right)^{2} d x$. $\left[\frac{1}{3}\right]$
13. Given that $y=x \ln x$, find an expression for $\frac{d y}{d x}$.

Hence find $\int \ln x d x$.

$$
[y=x \ln x-x+c]
$$

15. Given that $y=x^{2} \ln x$, find an expression for $\frac{d y}{d x}$. Hence find $\int x \ln x d x$.

$$
\left[y=\frac{1}{2} x^{2} \ln x-\frac{1}{4} x^{2}+c\right]
$$

16. Given that $y=x^{3} \ln x$, find an expression for $\frac{d y}{d x}$.

Hence find $\int x^{2} \ln x d x$.

$$
\left[y=\frac{1}{3} x^{3} \ln x-\frac{1}{9} x^{3}+c\right]
$$

17. Given that $\int_{0}^{1} f(x) d x=\int_{1}^{3} f(x) d x=3$, evaluate
(a) $\int_{0}^{1} f(x) d x+\int_{3}^{1} f(x) d x$
(b) $\int_{1}^{0} f(x) d x$
(c) $\int_{1}^{3}[2 f(x)+5] d x$
[(a) 0 (b) -3 (c) 16]
