ACJC Prelim 9758/2017/01/Q7

(a) Given that $2 z+1=|w|$ and $2 w-z=4+8 \mathrm{i}$, solve for w and z.
(b) Find the exact values of x and y, where $x, y \in \mathbb{R}$, such that $2 \mathrm{e}^{-\left(\frac{3+x+i y}{i}\right)}=1-\mathrm{i}$.
(a) $z=2, w=3+4$; ; (b) $x=-\frac{\pi}{4}-3, y=\frac{1}{2} \ln 2$.

ACJC Prelim 9758/2017/02/Q1

Given that $1+\mathrm{i}$ is a root of the equation $z^{3}-4(1+\mathrm{i}) z^{2}+(-2+9 \mathrm{i}) z+5-\mathrm{i}=0$, find the other roots of the equation.

AJC Prelim 9758/2017/01/Q6

The diagram below shows the line l that passes through the origin and makes an angle α with the positive real axis, where $0<\alpha<\frac{\pi}{2}$.
Point P represents the complex number z_{1} where $0<\arg z_{1}<\alpha$ and length of $O P$ is r units.
Point P is reflected in line l to produce point Q, which represents the complex number z_{2}.

Prove that $\arg z_{1}+\arg z_{2}=2 \alpha$.

| Deduce that $z_{1} z_{2}=r^{2}(\cos 2 \alpha+i \sin 2 \alpha)$. | $[1]$ |
| :--- | :--- | :---: |
| Let R be the point that represents the complex number $z_{1} z_{2}$. | Given that $\alpha=\frac{\pi}{4}$, |
| cartesian equation of the locus of R as $\quad z_{1}$ varies. | $[2]$ |

AJC Prelim 9758/2017/02/Q2

The polynomial $\mathrm{P}(z)$ has real coefficients. The equation $\mathrm{P}(z)=0$ has a root $r \mathrm{e}^{\mathrm{i} \theta}$, where $r>0$ and $0<\theta<\pi$. Write down a second root in terms of r and θ, and hence show that a quadratic factor of $\mathrm{P}(z)$ is $z^{2}-2 r z \cos \theta+r^{2}$.

Let $\mathrm{P}(z)=z^{3}+a z^{2}+15 z+18$ where a is a real number. One of the roots of the equation $\mathrm{P}(z)=0$ is $3 \mathrm{e}^{\mathrm{i}\left(\frac{2 \pi}{3}\right)}$. By expressing $\mathrm{P}(\mathrm{z})$ as a product of two factors with real coefficients, find a and the other roots of $\mathrm{P}(\mathrm{z})=0$.

Deduce the roots of the equation $18 z^{3}+15 z^{2}+a z+1=0$.

> Answers
> $a=5$
> $3 e^{i\left(\frac{2 \pi}{3}\right)}, 3 e^{i\left(-\frac{2 \pi}{3}\right)}$ and $-2=2 e^{i(\pi)}$
> $z=\frac{1}{3} e^{i\left(-\frac{2 \pi}{3}\right)}, \frac{1}{3} e^{i\left(\frac{2 \pi}{3}\right)},-\frac{1}{2}$

CJC Prelim 9758/2017/02/Q4

(a) The complex numbers Z and w satisfy the simultaneous equations

$$
\begin{equation*}
z+w^{*}+5 \mathrm{i}=10 \quad \text { and } \quad|w|^{2}=z+18+\mathrm{i} . \tag{4}
\end{equation*}
$$

Find z and w.
(b) (i) It is given that $2+i$ is a root of the equation $z^{2}-5 z+7+i=0$. Find the second root of the equation in cartesian form, showing your working clearly.
(ii) Hence find the roots of the equation $-\mathrm{i} w^{2}+5 w+7 \mathrm{i}-1=0$.
(c) The complex number z is given by $z=-a+a$ i, where a is a positive real number.
(i) It is given that $w=-\frac{\sqrt{2} z^{*}}{z^{4}}$. Express w in the form $r \mathrm{e}^{\mathrm{i} \theta}$, in terms of a, where $r>0$ and $-\pi<\theta \leq \pi$.
(ii) Find the two smallest positive whole number values of n such that $\operatorname{Re}\left(w^{n}\right)=0$.

Answers
(a) $w=3+4 \mathrm{i}, z=7-\mathrm{i}$
$w=-4+4 \mathrm{i}, z=14-\mathrm{i}$
(b)(i) 3-i
(ii) $w=1-2 \mathrm{i}, w=-1-3 \mathrm{i}$
(c)(i) $\frac{1}{2 a^{3}} \mathrm{e}^{\mathrm{i}\left(-\frac{3 \pi}{4}\right)}$
(ii) 2, 6

DHS Prelim 9758/2017/01/Q8

Do not use a graphic calculator in answering this question.
(a)

It is given that $\mathrm{f}(x)$ is a cubic polynomial with real coefficients. The diagram shows the curve with equation $\bar{y}=\mathrm{f}(x)$. What can be said about all the roots of the equation $\mathrm{f}(x)=0$?
(b) The equation $2 z^{2}-(7+6 \mathrm{i}) z+11+\mathrm{i} c=0$, where c is a non-zero real number, has a root $z=3+4$ i. Show that $c=-2$. Determine the other root of the equation in cartesian form. Hence find the roots of the equation $2 w^{2}+(-6+7 \mathrm{i}) w-11+2 \mathrm{i}=0$.
(c) The complex number z is given by $z=1+\mathrm{e}^{\mathrm{i} \alpha}$.
(i) Show that Z can be expressed as $2 \cos \left(\frac{1}{2} \alpha\right) \mathrm{e}^{\mathrm{i}\left(\frac{1}{2} \alpha\right)}$.
(ii) Given $\alpha=\frac{1}{3} \pi$ and $w=-1-\sqrt{ } 3 \mathrm{i}$, find the exact modulus and argument of $\left(\frac{z}{w^{3}}\right)^{*}$.
(a) Since the curve shows only one x-intercept, it means that there is only one real root in the equation $\mathrm{f}(x)=0$.
Since the equation has all real coefficients, then the two other roots must be non-real and they are a conjugate pair.
(b) $\frac{1}{2}-\mathrm{i} ; 4-3 \mathrm{i}$ and $-1-\frac{1}{2} \mathrm{i}$.
(c) (ii) $\frac{\sqrt{ } 3}{8} ;-\frac{\pi}{6}$

HCI Prelim 9758/2017/01/Q4

The complex number z is given by $z=r \mathrm{e}^{\mathrm{i} \theta}$, where $r>0$ and $0 \leq \theta \leq \pi$. It is given that the complex number $w=(-\sqrt{3}-\mathrm{i}) z$.
(i) Find $|w|$ in terms of r, and $\arg w$ in terms of θ.
(ii) Given that $\frac{z^{8}}{w^{*}}$ is purely imaginary, find the three smallest values of θ in terms of π.

Answers
(i) $|w|=2 r, \arg w=-\frac{5 \pi}{6}+\theta$
(ii) $9 \theta-\frac{5 \pi}{6}=\ldots,-\frac{3 \pi}{2},-\frac{\pi}{2}, \frac{\pi}{2}, \frac{3 \pi}{2}, \ldots$

The three smallest values of θ are $\frac{\pi}{27}, \frac{4 \pi}{27}$ and $\frac{7 \pi}{27}$.

The complex numbers z and w satisfy the following equations

$$
\begin{align*}
2 z+3 w & =20 \\
w-z w^{*} & =6+22 \mathrm{i} \tag{5}
\end{align*}
$$

(i) Find z and w in the form $a+b$ i, where a and b are real, $a \neq 0$.
(ii) Show z and w on a single Argand diagram, indicating clearly their modulus. State the relationship between z and w with reference to the origin O.

IJC Prelim 9758/2017/01/Q4

A graphic calculator is not to be used in answering this question.
(a) The equation $w^{3}+p w^{2}+q w+30=0$, where p and q are real constants, has a root $w=2-\mathrm{i}$. Find the values of p and q, showing your working.
(b) The equation $z^{2}+(-5+2 i) z+(21-i)=0$ has a root $z=3+u i$, where u is real constant. Find the value of u and hence find the second root of the equation in cartesian form, $a+b \mathrm{i}$, showing your working.

Answers
(a) $p=2, q=-19$
(b) $u=-5, z=2+3 \mathrm{i}$

IJC Prelim 9758/2017/02/Q1

The complex number z is such that $|z|=1$ and $\arg z=\theta$, where $0<\theta<\frac{\pi}{4}$.
(i) Mark a possible point A representing z on an Argand diagram. Hence, mark the points B and C representing z^{2} and $z+z^{2}$ respectively on the same Argand diagram corresponding to point A.
(ii) State the geometrical shape of $O A C B$.
(iii) Express $z+z^{2}$ in polar form, $p \cos (q \theta)[\cos (k \theta)+i \sin (k \theta)]$, where p, q and k are constants to be determined.

| | |
| ---: | ---: | ---: |
| | (ii) Answers |
| | (iii) $2 \cos \frac{\theta}{2}\left[\cos \frac{3 \theta}{2}+\mathrm{i} \sin \frac{3 \theta}{2}\right]$ |

JJC Prelim 9758/2017/01/Q7

(a) If $u=2-\mathrm{i} \sin ^{2} \theta$ and $v=2 \cos ^{2} \theta+\mathrm{i} \sin ^{2} \theta$ where $-\pi<\theta \leq \pi$, find $u-v$ in terms of $\sin ^{2} \theta$, and hence determine the exact expression for $|u-v|$ and the exact value of $\arg (u-v)$.
(b) The roots of the equation $x^{2}+(\mathrm{i}-3) x+2(1-\mathrm{i})=0$ are α and β, where α is a real number and β is not a real number. Find α and β.

Answers

$$
\begin{array}{r}
7 \text { (a) } u-v=2 \sin ^{2} \theta-2 \mathrm{i} \sin ^{2} \theta \\
|u-v|=2 \sqrt{2} \sin ^{2} \theta, \arg (u-v)=-\frac{\pi}{4} \\
7 \text { (b) } \alpha=2, \beta=1-\mathrm{i}
\end{array}
$$

MI Prelim 9740/2017/01/Q10

(a) It is given that $-1+\mathrm{i}$ is a root of the equation $2 z^{3}+a z^{2}+b z+(3+\mathrm{i})=0$.
(i) Find the values of the real numbers a and b.
(ii) Using these values of a and b, find the other roots of this equation.
(b) It is given that $w=-1+(\sqrt{ } 3) \mathrm{i}$.
(i) Without using a calculator, find an exact expression for w^{5}. Give your answer in the form $r e^{\mathrm{i} \theta}$, where $r>0$ and $0 \leq \theta \leq 2 \pi$.
(ii) Without using a calculator, find the three smallest positive whole number values of n for which $\frac{w^{*}}{w^{n}}$ is a real number.

> Answers (a)(i) $a=6, b=7$
> (a)(ii) $z=-\frac{1}{2}-\frac{1}{2} \mathrm{i}$ or $z=-\frac{3}{2}-\frac{1}{2} \mathrm{i}$
> (b)(i) $32 \mathrm{e}^{\mathrm{i}\left(\frac{4 \pi}{3}\right)}$
> (b)(ii) $2,5,8$.

MJC Prelim 9758/2017/01/Q3

Do not use a calculator in answering this question.
Showing your working, find the complex numbers z and w which satisfy the simultaneous equations

$$
\begin{align*}
& 4 \mathrm{i} z-3 w=1+5 \mathrm{i} \text { and } \\
& 2 z+(1+\mathrm{i}) w=2+6 \mathrm{i} . \tag{5}
\end{align*}
$$

MJC Prelim 9758/2017/02/Q1

The complex number z has modulus 3 and argument $\frac{2 \pi}{3}$.
(i) Find the modulus and argument of $\frac{-2 i}{z^{*}}$, where z^{*} is the complex conjugate of z, leaving your answers in the exact form.
(ii) Hence express $\frac{-2 \mathrm{i}}{z^{*}}$ in the form of $x+\mathrm{i} y$, where x and y are real constants, giving the exact values of x and y in non-trigonometrical form.
(iii) The complex number w is defined such that $w=1+i k$, where k is a non-zero real constant. Given that $\frac{-2 \mathrm{i} w}{z^{*}}$ is purely imaginary, find the exact value of k.

(ii) $\frac{\sqrt{3}}{3}+\frac{1}{3}$ i

(iii) $k=\sqrt{3}$

NJC Prelim 9758/2017/01/Q5

Do not use a calculator in answering this question.

(a) Showing your working clearly, find the complex numbers z and w which satisfy the simultaneous equations

$$
\begin{gather*}
\mathrm{i} z+w=2 \quad \text { and } \\
z w^{*}=2+4 \mathrm{i}, \tag{5}
\end{gather*}
$$

where w^{*} is the complex conjugate of w.
(b) The complex number p is given by $a+\mathrm{i} b$, where $a>0, b<0, a^{2}+b^{2}>1$ and $\tan ^{-1}\left(\frac{b}{a}\right)=-\frac{2 \pi}{9}$.
(i) Express the complex number $\frac{1}{p^{2}}$ in the form $r \mathrm{e}^{\mathrm{i} \theta}$, where r is in terms of a and b, and $-\pi<\theta \leq \pi$.
(ii) On a single Argand diagram, illustrate the points P and Q representing the complex numbers p and $\frac{1}{p^{2}}$ respectively, labelling clearly their modulus and argument.
(iii) It is given that $\angle O P Q=\alpha$. Using sine rule, show that $|p|^{3} \approx \frac{\sqrt{3}}{2 \alpha}-\frac{1}{2}-\frac{\alpha}{2 \sqrt{3}}$ where α is small.

NYJC Prelim 9758/2017/01/Q3

Do not use a calculator in answering this question.

PJC Prelim 9758/2017/02/Q4

Do not use a graphic calculator in answering this question.

The complex number z is given by $z=-1+i c$, where c is a non-zero real number. Given that $\frac{z^{n}}{z^{*}}$ is purely real, find
(i) the possible values of c when $n=2$,
(ii) the three smallest positive integer values of n when $c=\sqrt{3}$.
(i) $c=0, c= \pm \sqrt{3}$
(ii) Three smallest positive integer values of n are $2,5,8$

RI Prelim 9758/2017/01/Q9

Do not use a calculator in answering this question.

(a) One root of the equation $z^{4}+2 z^{3}+a z^{2}+b z+50=0$, where a and b are real, is $z=1+3 \mathrm{i}$.
(i) Show that $a=7$ and $b=30$ and find the other roots of the equation.
(ii) Deduce the roots of the equation $w^{4}-2 \mathrm{i} w^{3}-7 w^{2}+30 \mathrm{i} w+50=0$.
(b) Given that $p^{*}=\frac{\left(-\frac{1}{\sqrt{3}}+\mathrm{i}\right)^{5}}{(1-\mathrm{i})^{4}}$, by considering the modulus and argument of p^{*}, find the exact expression for p, in cartesian form $x+$ iy.
(a)(i) $z=1-3 i, \quad z=-2+i$ and $z=-2-i$.
(a)(ii) $w=-\mathrm{i}-3, w=-\mathrm{i}+3, w=2 \mathrm{i}+1$ and $w=2 \mathrm{i}-1$.
(b) $\frac{4}{9 \sqrt{3}}-\frac{4}{9} \mathrm{i}$ or $\frac{4 \sqrt{3}}{27}-\frac{4}{9} \mathrm{i}$

RVHS Prelim 9758/2017/01/Q6

Do not use a calculator in answering this question.

(a) Solve the simultaneous equations

$$
z-4 w=11+6 i \text { and } 3 z+6 i w=27
$$

giving z and w in the form $x+\mathrm{i} y$ where x and y are real.
(b) (i) The complex numbers z and w are given as $z=4\left(\cos \frac{\pi}{3}-\mathrm{i} \sin \frac{\pi}{3}\right)$ and $w=1+\mathrm{i} \sqrt{3}$. w^{*} denotes the conjugate of w. Find the modulus r and the $\operatorname{argument} \theta$ of $\frac{w^{*}}{z^{2}}$, where $r>0$ and $-\pi<\theta \leq \pi$.
(ii) Find the set of possible values of n such that $\left(\frac{w^{*}}{z^{2}}\right)^{n}$ is purely imaginary.

SAJC Prelim 9758/2017/02/Q1	
	Without the use of a calculator, find the complex numbers z and w which satisfy the simultaneous equations $z-w i=3$ $z^{2}-w+6+3 \mathrm{i}=0$

	SRJC Prelim 9758/2017/01/Q1
	The complex numbers z and w satisfy the simultaneous equations $\mathrm{i} z+w=2+\mathrm{i}$ and $2 w-(1+\mathrm{i}) z=8+4 \mathrm{i}$. l

	Find z and w in the form of $a+\mathrm{i} b$, where a and b are real.	$[5]$
		Answers $z=-1+\mathrm{i}$

SRJC Prelim 9758/2017/01/Q3

For $\alpha, \beta \in \mathbb{R}$ such that $2 \alpha<\beta$, the complex numbers $z_{1}=\mathrm{e}^{\mathrm{i} \alpha}$ and $z_{2}=2 \mathrm{e}^{\mathrm{i} \beta}$ are represented by the points P and Q respectively in the Argand diagram below.

Find the modulus and argument of the complex numbers given by $\frac{i}{2} z_{2}$ and $\frac{z_{1}{ }^{2}}{z_{2}}$.
Copy the given Argand diagram onto your answer script and indicate clearly the following points representing the corresponding complex numbers on your diagram.
(i) $A: \frac{\mathrm{i}}{2} z_{2}$
(ii) $B: \frac{Z_{1}{ }^{2}}{Z_{2}}$

You are expected to indicate clearly the relevant moduli and arguments for parts (i) and (ii) on your Argand diagram.
If $\beta=\frac{11}{12} \pi$, find the smallest positive integer n such that the point representing the complex number $\left(z_{2}\right)^{n}$ lies on the negative real axis.

TJC Prelim 9758/2017/01/Q8

(a) In an Argand diagram, points P and Q represent the complex numbers $z_{1}=2+3 \mathrm{i}$ and $z_{2}=\mathrm{i} z_{1}$.
(i) Find the area of the triangle $O P Q$, where O is the origin.
(ii) z_{1} and z_{2} are roots of the equation $\left(z^{2}+a z+b\right)\left(z^{2}+c z+d\right)=0$, where $a, b, c, d \in \mathbb{R}$. Find a, b, c and d.
(b) Without using the graphing calculator, find in exact form, the modulus and argument of $v^{*}=\left(\frac{\sqrt{3}+\mathrm{i}}{-1+\mathrm{i}}\right)^{14}$. Hence express v in exponential form.

(ii) $a=-4, b=13, c=6, d=13$
(b) $\quad v=2^{7} \mathrm{e}^{\mathrm{i} \frac{\pi}{6}}$

TPJC Prelim 9758/2017/01/Q4

It is given that $z=-1-i \sqrt{ } 3$.
(i) Given that $\frac{(i z)^{n}}{z^{2}}$ is purely imaginary, find the smallest positive integer n.

The complex number w is such that $|w z|=4$ and $\arg \left(\frac{w^{*}}{z^{2}}\right)=-\frac{5 \pi}{6}$.
(ii) Find the value of $|w|$ and the exact value of $\arg (w)$ in terms of π.

On an Argand diagram, points A and B represent the complex numbers w and z respectively.
(iii) Referred to the origin O, find the exact value of the angle $O A B$ in terms of π. Hence, or otherwise, find the exact value of $\arg (z-w)$ in terms of π.

Answers
(i) \therefore smallest positive integer $n=5$.

$$
\text { (ii) }|w|=2, \arg (w)=\frac{13 \pi}{6}
$$

(iii) Hence Method: $\arg (z-w)=-\left[\pi-\frac{\pi}{6}-\frac{\pi}{12}\right]$

$$
\begin{aligned}
& =-\left[\frac{5 \pi}{6}-\left(\frac{1}{2}\left\{\pi-\frac{5 \pi}{6}\right\}\right)\right] \\
& =-\frac{3 \pi}{4} \quad(\text { exact })
\end{aligned}
$$

Otherwise Method:

$$
z-w=(-1-\sqrt{3})+(-1-\sqrt{3}) \mathrm{i} \quad \arg (z-w)=-\left(\pi-\frac{\pi}{4}\right)=-\frac{3 \pi}{4}
$$

TPJC Prelim 9758/2017/02/Q1

The cubic equation $a z^{3}-31 z^{2}+212 z+b=0$, where a and b are real numbers, has a complex root $z=1-3 \mathrm{i}$.
(i) Explain why the equation must have a real root.
(ii) Find the values of a and b and the real root, showing your working clearly.
(i)Since the coefficients of $a z^{3}-31 z^{2}+212 z+b=0$ are all real, complex roots occur in conjugate pair.

Since a cubic equation has three roots, the third root must be a real root.

$$
\text { (ii) } a=25, b=190,-\frac{19}{25}
$$

VJC Prelim 9758/2017/01/Q10

It is given that z_{1}, z_{2} and z_{3} are the roots of the equation

$$
2 z^{3}+p z^{2}+q z-4=0
$$

such that $\arg z_{1}<\arg z_{2}<\arg z_{3}$ and $z_{1}=1-i \sqrt{3}$. Find the values of the real numbers p and q .
(i) Without using the calculator, find z_{2} and z_{3}.

In an Argand diagram, points P, Q and R represent the complex numbers $z_{1}, w=\sqrt{2}+\mathrm{i} \sqrt{2} \quad$ and $z_{1}+w$ respectively and O is the origin.
(ii) Express each of z_{1} and w in the form $r \mathrm{e}^{\mathrm{i} \theta}$, where $r>0$ and $-\pi<\theta \leqslant \pi$. Give r and θ in exact form.
(iii) Indicate P, Q and R on the Argand diagram and identify the type of the quadrilateral $O P R Q$.
(iv) Find the exact value of $\arg \left(z_{1}{ }^{4} w^{*}\right)$.

$$
p=-5, q=10
$$

(i)

$$
z_{2}=\frac{1}{2}, z_{3}=1+\sqrt{3} \mathrm{i}
$$

(ii)

$$
z_{1}=2 \mathrm{e}^{-\frac{\pi_{\mathrm{i}}}{3}}, \quad w=2 \mathrm{e}^{\frac{\pi_{\mathrm{i}}}{}}
$$

(iii) rhombus

	YJC Prelim 9758/2017/01/Q5

	YJC Prelim 9758/2017/02/Q3
	Do not use a calculator in answering this question. Given that $z=1+i$ is a root of the equation $2 z^{4}+a z^{3}+7 z^{2}+b z+2=0$, find the values of the real numbers a and b and the other roots. Deduce the roots of the equation $2 z^{4}+b z^{3}+7 z^{2}+a z+2=0$.
	Answers

