# 2017 H2 MA Prelim Compilation - Complex Numbers (29 Questions)

# ACJC Prelim 9758/2017/01/Q7

- (a) Given that 2z+1=|w| and 2w-z=4+8i, solve for w and z. [5]
- **(b)** Find the exact values of x and y, where  $x, y \in \mathbb{R}$ , such that  $2e^{-\left(\frac{3+x+iy}{i}\right)} = 1-i$ . [4]

Answers

(a) 
$$z = 2$$
,  $w = 3 + 4i$ ; (b)  $x = -\frac{\pi}{4} - 3$ ,  $y = \frac{1}{2} \ln 2$ .

### ACJC Prelim 9758/2017/02/Q1

Given that 1+i is a root of the equation  $z^3 - 4(1+i)z^2 + (-2+9i)z + 5 - i = 0$ , find the other roots of the equation. [4]

Answers

z = 3 + 2i or z = i

#### AJC Prelim 9758/2017/01/Q6

The diagram below shows the line l that passes through the origin and makes an angle  $\alpha$  with the positive real axis, where  $0 < \alpha < \frac{\pi}{2}$ .

Point P represents the complex number  $z_1$  where  $0 < \arg z_1 < \alpha$  and length of OP is r units. Point P is reflected in line l to produce point Q, which represents the complex number  $z_2$ .



Prove that arg  $z_1 + \arg z_2 = 2\alpha$ .

[2]

| Deduce that $z_1 z_2 = r^2 (\cos 2\alpha + i \sin 2\alpha)$ .       | [1]                                             |       |
|---------------------------------------------------------------------|-------------------------------------------------|-------|
| Let $R$ be the point that represents the complex number $z_1 z_2$ . | Given that $\alpha = \frac{\pi}{4}$ , write dow | n the |
| cartesian equation of the locus of $R$ as $z_1$ varies.             | [2]                                             |       |
|                                                                     |                                                 |       |
|                                                                     | An                                              | swers |
|                                                                     | x = 0,                                          | y > 0 |

# AJC Prelim 9758/2017/02/Q2

The polynomial P(z) has real coefficients. The equation P(z) = 0 has a root  $re^{i\theta}$ , where r > 0 and  $0 < \theta < \pi$ . Write down a second root in terms of r and  $\theta$ , and hence show that a quadratic factor of P(z) is  $z^2 - 2rz\cos\theta + r^2$ . [2]

Let  $P(z) = z^3 + az^2 + 15z + 18$  where a is a real number. One of the roots of the equation P(z) = 0 is  $3e^{i\left(\frac{2\pi}{3}\right)}$ . By expressing P(z) as a product of two factors with real coefficients, find a and the other roots of P(z) = 0.

Deduce the roots of the equation  $18z^3 + 15z^2 + az + 1 = 0$ . [2]

Answers a = 5  $3e^{i\left(\frac{2\pi}{3}\right)}, 3e^{i\left(-\frac{2\pi}{3}\right)} \text{ and } -2 = 2e^{i(\pi)}$   $z = \frac{1}{3}e^{i\left(-\frac{2\pi}{3}\right)}, \frac{1}{3}e^{i\left(\frac{2\pi}{3}\right)}, -\frac{1}{2}$ 

#### CJC Prelim 9758/2017/02/Q4

(a) The complex numbers z and w satisfy the simultaneous equations

Find z and w. 
$$z+w^*+5i=10$$
 and  $|w|^2=z+18+i$ . [4]

- (b) (i) It is given that 2+i is a root of the equation  $z^2-5z+7+i=0$ . Find the second root of the equation in cartesian form, showing your working clearly. [2]
  - (ii) Hence find the roots of the equation  $-iw^2 + 5w + 7i 1 = 0$ . [2]

- (c) The complex number z is given by z = -a + ai, where a is a positive real number.
  - (i) It is given that  $w = -\frac{\sqrt{2}z^*}{z^4}$ . Express w in the form  $re^{i\theta}$ , in terms of a, where r > 0 and  $-\pi < \theta \le \pi$ .

[4]

(ii) Find the two smallest positive whole number values of n such that  $\text{Re}(w^n) = 0$ .

Answers

(a) 
$$w = 3 + 4i$$
,  $z = 7 - i$ 

$$w = -4 + 4i$$
,  $z = 14 - i$ 

$$(b)(i) 3-i$$

(ii) 
$$w = 1 - 2i$$
,  $w = -1 - 3i$ 

$$(c)(i) \frac{1}{2a^3} e^{i\left(-\frac{3\pi}{4}\right)}$$

(ii) 2, 6

# DHS Prelim 9758/2017/01/Q8

Do not use a graphic calculator in answering this question.

(a)



It is given that f(x) is a cubic polynomial with real coefficients. The diagram shows the curve with equation y = f(x). What can be said about all the roots of the equation f(x) = 0?

ExamPaper (2)

(b) The equation  $2z^2 - (7+6i)z + 11 + ic = 0$ , where c is a non-zero real number, has a root z = 3+4i. Show that c = -2. Determine the other root of the equation in cartesian form. Hence find the roots of the equation  $2w^2 + (-6+7i)w - 11 + 2i = 0$ . [6]

- (c) The complex number z is given by  $z = 1 + e^{i\alpha}$ .
  - (i) Show that z can be expressed as  $2\cos(\frac{1}{2}\alpha)e^{i(\frac{1}{2}\alpha)}$ .
  - (ii) Given  $\alpha = \frac{1}{3}\pi$  and  $w = -1 \sqrt{3}i$ , find the exact modulus and argument of  $\left(\frac{z}{w^3}\right)^*$ .

Answers

[2]

(a) Since the curve shows only one *x*-intercept, it means that there is only one real root in the equation f(x) = 0.

Since the equation has all real coefficients, then the two other roots must be non-real and they are a conjugate pair.

(b) 
$$\frac{1}{2} - i$$
;  $4 - 3i$  and  $-1 - \frac{1}{2}i$ .  
(c) (ii)  $\frac{\sqrt{3}}{8}$ ;  $-\frac{\pi}{6}$ 

# HCI Prelim 9758/2017/01/Q4

The complex number z is given by  $z = re^{i\theta}$ , where r > 0 and  $0 \le \theta \le \pi$ . It is given that the complex number  $w = (-\sqrt{3} - i)z$ .

- (i) Find |w| in terms of r, and  $\arg w$  in terms of  $\theta$ . [2]
- (ii) Given that  $\frac{z^8}{w^*}$  is purely imaginary, find the three smallest values of  $\theta$  in terms of  $\pi$ .

[5]



(i) 
$$|w| = 2r$$
,  $\arg w = -\frac{5\pi}{6} + \theta$   
(ii)  $9\theta - \frac{5\pi}{6} = \dots, -\frac{3\pi}{2}, -\frac{\pi}{2}, \frac{\pi}{2}, \frac{3\pi}{2}, \dots$ 

The three smallest values of  $\theta$  are  $\frac{\pi}{27}$ ,  $\frac{4\pi}{27}$  and  $\frac{7\pi}{27}$ .

#### HCI Prelim 9758/2017/02/Q2

The complex numbers z and w satisfy the following equations

$$2z + 3w = 20 ,$$

$$w - z w^* = 6 + 22i$$
.

- (i) Find z and w in the form a+bi, where a and b are real,  $a \neq 0$ . [5]
- (ii) Show z and w on a single Argand diagram, indicating clearly their modulus. State the relationship between z and w with reference to the origin O. [2]

Answers

(i) 
$$w = 6 + 2i$$
,  $z = 1 - 3i$ 

(ii)  $\angle WOZ$  is 90°

| IIC Prelim | 9758/2017/01/Q4 |
|------------|-----------------|
|            | 7/30/401//01/04 |

A graphic calculator is **not** to be used in answering this question.

- (a) The equation  $w^3 + pw^2 + qw + 30 = 0$ , where p and q are real constants, has a root w = 2 i. Find the values of p and q, showing your working. [3]
- (b) The equation  $z^2 + (-5+2i)z + (21-i) = 0$  has a root z = 3+ui, where u is real constant. Find the value of u and hence find the second root of the equation in cartesian form, a+bi, showing your working. [5]

Answers

(a) 
$$p = 2, q = -19$$

(b) 
$$u = -5$$
,  $z = 2 + 3i$ 

#### IJC Prelim 9758/2017/02/Q1

The complex number z is such that |z|=1 and  $\arg z=\theta$ , where  $0<\theta<\frac{\pi}{4}$ .

- (i) Mark a possible point A representing z on an Argand diagram. Hence, mark the points B and C representing  $z^2$  and  $z + z^2$  respectively on the same Argand diagram corresponding to point A. [2]
- (ii) State the geometrical shape of OACB.

[1]

(iii) Express  $z + z^2$  in polar form,  $p\cos(q\theta)\left[\cos(k\theta) + i\sin(k\theta)\right]$ , where p, q and k are constants to be determined. [2]

| Answers                                                                                                 |
|---------------------------------------------------------------------------------------------------------|
| (ii) rhombus                                                                                            |
| (iii) rhombus $(iii) 2\cos\frac{\theta}{2} \left[\cos\frac{3\theta}{2} + i\sin\frac{3\theta}{2}\right]$ |

# JJC Prelim 9758/2017/01/Q7

- (a) If  $u = 2 i \sin^2 \theta$  and  $v = 2 \cos^2 \theta + i \sin^2 \theta$  where  $-\pi < \theta \le \pi$ , find u v in terms of  $\sin^2 \theta$ , and hence determine the exact expression for |u v| and the exact value of  $\arg(u v)$ .
- (b) The roots of the equation  $x^2 + (i-3)x + 2(1-i) = 0$  are  $\alpha$  and  $\beta$ , where  $\alpha$  is a real number and  $\beta$  is not a real number. Find  $\alpha$  and  $\beta$ . [4]

Answers  $7(a) u - v = 2\sin^{2}\theta - 2i\sin^{2}\theta$   $|u - v| = 2\sqrt{2}\sin^{2}\theta, \arg(u - v) = -\frac{\pi}{4}$   $7(b) \alpha = 2, \beta = 1-i$ 

#### MI Prelim 9740/2017/01/Q10

- (a) It is given that -1+i is a root of the equation  $2z^3 + az^2 + bz + (3+i) = 0$ .
  - (i) Find the values of the real numbers a and b. [4]
  - (ii) Using these values of a and b, find the other roots of this equation. [3]
- **(b)** It is given that  $w = -1 + (\sqrt{3})i$ .
  - (i) Without using a calculator, find an exact expression for  $w^5$ . Give your answer in the form  $re^{i\theta}$ , where r > 0 and  $0 \le \theta \le 2\pi$ . [3]
  - (ii) Without using a calculator, find the three smallest positive whole number values of n for which  $\frac{w^*}{w^n}$  is a real number. [4]

Answers
(a)(i) a = 6, b = 7(a)(ii)  $z = -\frac{1}{2} - \frac{1}{2}i$  or  $z = -\frac{3}{2} - \frac{1}{2}i$ (b)(i)  $32e^{i\left(\frac{4\pi}{3}\right)}$ (b)(ii) 2, 5, 8.

#### MJC Prelim 9758/2017/01/Q3

## Do not use a calculator in answering this question.

Showing your working, find the complex numbers z and w which satisfy the simultaneous equations

$$4iz - 3w = 1 + 5i$$
 and  
 $2z + (1+i)w = 2 + 6i$ . [5]

Answers w = -3 + 5i and z = 5 + 2i

### MJC Prelim 9758/2017/02/Q1

The complex number z has modulus 3 and argument  $\frac{2\pi}{3}$ .

- (i) Find the modulus and argument of  $\frac{-2i}{z^*}$ , where  $z^*$  is the complex conjugate of z, leaving your answers in the exact form. [3]
- (ii) Hence express  $\frac{-2i}{z^*}$  in the form of x + iy, where x and y are real constants, giving the exact values of x and y in non-trigonometrical form. [2]
- (iii) The complex number w is defined such that w = 1 + ik, where k is a non-zero real constant. Given that  $\frac{-2iw}{z^*}$  is purely imaginary, find the exact value of k. [2]

Answers (i)  $\frac{2}{3}$ ;  $\frac{\pi}{6}$ 

(ii) 
$$\frac{\sqrt{3}}{3} + \frac{1}{3}i$$
(iii)  $k = \sqrt{3}$ 

# NJC Prelim 9758/2017/01/Q5

Do not use a calculator in answering this question.

(a) Showing your working clearly, find the complex numbers z and w which satisfy the simultaneous equations

$$iz + w = 2$$
 and  $zw^* = 2 + 4i$ ,

where  $w^*$  is the complex conjugate of w.

[5]

- **(b)** The complex number p is given by a+ib, where a>0, b<0,  $a^2+b^2>1$  and  $\tan^{-1}\left(\frac{b}{a}\right)=-\frac{2\pi}{9}$ .
  - (i) Express the complex number  $\frac{1}{p^2}$  in the form  $re^{i\theta}$ , where r is in terms of a and b, and  $-\pi < \theta \le \pi$ .
  - (ii) On a single Argand diagram, illustrate the points P and Q representing the complex numbers p and  $\frac{1}{p^2}$  respectively, labelling clearly their modulus and argument.
  - (iii) It is given that  $\angle OPQ = \alpha$ . Using sine rule, show that  $|p|^3 \approx \frac{\sqrt{3}}{2\alpha} \frac{1}{2} \frac{\alpha}{2\sqrt{3}}$  where  $\alpha$  is small.

Answers w = 3 - i, z = 1 + i w = -1 - i, z = 1 - 3i;  $\frac{1}{p^2} = \frac{1}{a^2 + b^2} e^{i\left(\frac{4\pi}{9}\right)};$   $\frac{\sqrt{3}}{2x} - \frac{1}{2} - \frac{1}{2\sqrt{3}}x$ 



## NYJC Prelim 9758/2017/01/Q3

Do not use a calculator in answering this question.

- (i) Explain why the equation  $z^3 + az^2 + az + 7 = 0$  cannot have more than two non-real roots, where a is a real constant.
- (ii) Given that z = -7 is a root of the equation in (i), find the other roots, leaving your answers in the form  $re^{i\theta}$ , where r > 0 and  $-\pi < \theta \le \pi$ . [4]
- (iii) Hence, solve the equation  $iz^3 + 8z^2 8iz 7 = 0$ , leaving your answers in the form  $re^{i\theta}$ , where r > 0 and  $-\pi < \theta \le \pi$ .

Answers

(i) Since *a* is real, the polynomial equation has real coefficients, and thus all non-real roots must be in conjugate pairs. Since the degree of the polynomial is three, there will be 3 roots. The highest even number below 3 is 2.

(ii) 
$$z = 7e^{i\pi}, e^{\frac{i2\pi}{3}}, e^{\frac{i2\pi}{3}}$$
  
(iii)  $z = 7e^{\frac{i\pi}{2}}, e^{\frac{i\pi}{6}}, e^{\frac{i5\pi}{6}}$ 

# PJC Prelim 9758/2017/02/Q4

Do not use a graphic calculator in answering this question.

The complex number z is given by z = -1 + ic, where c is a non-zero real number. Given that  $\frac{z^n}{z}$  is purely real, find

(i) the possible values of c when n = 2,

[4]

[5]

(ii) the three smallest positive integer values of n when  $c = \sqrt{3}$ .

Answers

(i) 
$$c = 0$$
,  $c = \pm \sqrt{3}$ 

(ii) Three smallest positive integer values of n are 2,5,8

# RI Prelim 9758/2017/01/Q9

Do not use a calculator in answering this question.

(a) One root of the equation  $z^4 + 2z^3 + az^2 + bz + 50 = 0$ , where a and b are real, is z = 1 + 3i.

- (i) Show that a = 7 and b = 30 and find the other roots of the equation. [5]
- (ii) Deduce the roots of the equation  $w^4 2iw^3 7w^2 + 30iw + 50 = 0$ . [2]
- **(b)** Given that  $p^* = \frac{\left(-\frac{1}{\sqrt{3}} + i\right)^3}{\left(1 i\right)^4}$ , by considering the modulus and argument of  $p^*$ , find the

exact expression for p, in cartesian form x+iy.

Answers

[4]

(a)(i) 
$$z = 1 - 3i$$
,  $z = -2 + i$  and  $z = -2 - i$ .

(a)(ii) 
$$w = -i - 3$$
,  $w = -i + 3$ ,  $w = 2i + 1$  and  $w = 2i - 1$ .

(b) 
$$\frac{4}{9\sqrt{3}} - \frac{4}{9}i$$
 or  $\frac{4\sqrt{3}}{27} - \frac{4}{9}i$ 

## RVHS Prelim 9758/2017/01/Q6

Do not use a calculator in answering this question.

(a) Solve the simultaneous equations

$$z - 4w = 11 + 6i$$
 and  $3z + 6iw = 27$ 

giving z and w in the form x+iy where x and y are real.

[4]

- (b) (i) The complex numbers z and w are given as  $z = 4\left(\cos\frac{\pi}{3} i\sin\frac{\pi}{3}\right)$  and  $w = 1 + i\sqrt{3}$ .  $w^*$  denotes the conjugate of w. Find the modulus r and the argument  $\theta$  of  $\frac{w^*}{z^2}$ , where r > 0 and  $-\pi < \theta \le \pi$ .
  - (ii) Find the set of possible values of n such that  $\left(\frac{w^*}{z^2}\right)^n$  is purely imaginary. [3]



Answers

(a) 
$$w = -1 - i$$
,  $z = 7 + 2i$ 

(bi) 
$$\frac{1}{8}$$
,  $\frac{\pi}{3}$ 

(bii) 
$$\left\{ n : n = \frac{3(2m+1)}{2}, m \in \mathbb{Z} \right\}$$

| SAJ                                                                                                     | C Prelim 9758/2017/01/Q7                                                                                                                                     |
|---------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (i) Show that for any complex number $z = re^{i\theta}$ , where $r > 0$ , and $-\pi < \theta \le \pi$ , |                                                                                                                                                              |
|                                                                                                         | $\frac{z}{z-r} = \frac{1}{2} - \frac{1}{2} \left( \cot \frac{\theta}{2} \right) i.$                                                                          |
|                                                                                                         | [3]                                                                                                                                                          |
| (ii)                                                                                                    | Given that $z = 2e^{i\left(\frac{\pi}{3}\right)}$ is a root of the equation $z^2 - 2z + 4 = 0$ . State, in similar form, the other root of the equation. [1] |
| (iii)                                                                                                   | Using parts (i) and (ii), solve the equation $\frac{4w^2}{(w-1)^2} - \frac{4w}{w-1} + 4 = 0.$ [4]                                                            |
|                                                                                                         |                                                                                                                                                              |
|                                                                                                         | Answers                                                                                                                                                      |
|                                                                                                         | ii) $z = 2e^{i\left(-\frac{\pi}{3}\right)}$                                                                                                                  |
|                                                                                                         | ii) $z = 2e^{i\left(-\frac{\pi}{3}\right)}$<br>iii) $w = \frac{1}{2} - \frac{\sqrt{3}}{2}i$ or $w = \frac{1}{2} + \frac{\sqrt{3}}{2}i$                       |

| SAJC Prelim 9758/2017/02/Q1                                                                                    |
|----------------------------------------------------------------------------------------------------------------|
| Without the use of a calculator, find the complex numbers $z$ and $w$ which satisfy the simultaneous equations |
|                                                                                                                |
| $z - wi = 3$ $z^2 - w + 6 + 3i = 0$                                                                            |
| [6]                                                                                                            |
| Answers $z = 2i \text{ or } z = -3i$ $w = 2 + 3i \text{ or } w = -3 + 3i$                                      |



| SRJC Prelim 9758/2017/01/Q1                                                                                  |
|--------------------------------------------------------------------------------------------------------------|
| The complex numbers z and w satisfy the simultaneous equations $iz + w = 2 + i$ and $2w - (1+i)z = 8 + 4i$ . |

| Find z and w in the form of $a + ib$ , where a and b are real. | [5]                                   |
|----------------------------------------------------------------|---------------------------------------|
|                                                                | Answers $z = -1 + i$ and $w = 3 + 2i$ |

#### SRJC Prelim 9758/2017/01/Q3

For  $\alpha$ ,  $\beta \in \mathbb{R}$  such that  $2\alpha < \beta$ , the complex numbers  $z_1 = e^{i\alpha}$  and  $z_2 = 2e^{i\beta}$  are represented by the points P and Q respectively in the Argand diagram below.



Find the modulus and argument of the complex numbers given by  $\frac{i}{2}z_2$  and  $\frac{z_1^2}{z_2}$ . [4]

Copy the given Argand diagram onto your answer script and indicate clearly the following points representing the corresponding complex numbers on your diagram.

(i) 
$$A: \frac{i}{2}z_2$$
 [1]

(ii) 
$$B: \frac{z_1^2}{z_2}$$
 [1]

You are expected to indicate clearly the relevant moduli and arguments for parts (i) and (ii) on your Argand diagram.

If  $\beta = \frac{11}{12}\pi$ , find the smallest positive integer n such that the point representing the complex

number 
$$(z_2)^n$$
 lies on the negative real axis. [3]

Answers



(i) & (ii)



Smallest n required = 12

#### TJC Prelim 9758/2017/01/Q8

- (a) In an Argand diagram, points P and Q represent the complex numbers  $z_1 = 2 + 3i$  and  $z_2 = iz_1$ .
  - (i) Find the area of the triangle OPQ, where O is the origin. [2]
  - (ii)  $z_1$  and  $z_2$  are roots of the equation  $(z^2 + az + b)(z^2 + cz + d) = 0$ , where  $a, b, c, d \in \mathbb{R}$ . Find a, b, c and d. [4]
- (b) Without using the graphing calculator, find in exact form, the modulus and argument of  $v^* = \left(\frac{\sqrt{3} + i}{-1 + i}\right)^{14}$ . Hence express v in exponential form. [5]



Answers
$$\frac{13}{(a)(i)} \frac{2}{2}$$
(ii)  $a = -4$ ,  $b = 13$ ,  $c = 6$ ,  $d = 13$ 
(b)  $v = 2^7 e^{i\frac{\pi}{6}}$ 

## TPJC Prelim 9758/2017/01/Q4

It is given that  $z = -1 - i\sqrt{3}$ .

(i) Given that  $\frac{(iz)^n}{z^2}$  is purely imaginary, find the smallest positive integer n.

[4]

The complex number w is such that |wz| = 4 and  $\arg\left(\frac{w^*}{z^2}\right) = -\frac{5\pi}{6}$ .

(ii) Find the value of |w| and the exact value of arg(w) in terms of  $\pi$ .

[3]

On an Argand diagram, points A and B represent the complex numbers w and z respectively.

(iii) Referred to the origin O, find the exact value of the angle OAB in terms of  $\pi$ . Hence, or otherwise, find the exact value of  $\arg(z-w)$  in terms of  $\pi$ .

[2]

Answers

(i) : smallest positive integer n = 5.

(ii) 
$$|w| = 2$$
,  $\arg(w) = \frac{13\pi}{6}$ 

(iii) Hence Method: 
$$\arg(z-w) = -\left[\pi - \frac{\pi}{6} - \frac{\pi}{12}\right]$$

$$= -\left[\frac{5\pi}{6} - \left(\frac{1}{2}\left\{\pi - \frac{5\pi}{6}\right\}\right)\right]$$
$$= -\frac{3\pi}{4} \quad \text{(exact)}$$

**Otherwise Method:** 

$$z - w = (-1 - \sqrt{3}) + (-1 - \sqrt{3})i$$
  $\arg(z - w) = -(\pi - \frac{\pi}{4}) = -\frac{3\pi}{4}$ 

#### TPJC Prelim 9758/2017/02/Q1

The cubic equation  $az^3 - 31z^2 + 212z + b = 0$ , where a and b are real numbers, has a complex root z = 1 - 3i.

(i) Explain why the equation must have a real root.

[2]

(ii) Find the values of a and b and the real root, showing your working clearly. [5]

Answers

(i) Since the <u>coefficients</u> of  $az^3 - 31z^2 + 212z + b = 0$  are <u>all real</u>, <u>complex roots occur in conjugate</u> <u>pair</u>.

Since a **<u>cubic equation has three roots</u>**, the third root must be a real root.

(ii) 
$$a = 25$$
,  $b = 190$ ,  $-\frac{19}{25}$ 

# VJC Prelim 9758/2017/01/Q10

It is given that  $z_1$ ,  $z_2$  and  $z_3$  are the roots of the equation

$$2z^3 + pz^2 + qz - 4 = 0$$

such that  $\arg z_1 < \arg z_2 < \arg z_3$  and  $z_1 = 1 - \mathrm{i}\sqrt{3}$ . Find the values of the real numbers p and q

[3]

(i) Without using the calculator, find  $z_2$  and  $z_3$ .

[3]

In an Argand diagram, points P, Q and R represent the complex numbers  $z_1$ ,  $w = \sqrt{2} + i\sqrt{2}$  and  $z_1 + w$  respectively and Q is the origin.

- (ii) Express each of  $z_1$  and w in the form  $r e^{i\theta}$ , where r > 0 and  $-\pi < \theta \le \pi$ . Give r and  $\theta$  in exact form.
- (iii) Indicate P, Q and R on the Argand diagram and identify the type of the quadrilateral OPRQ. [3]
- (iv) Find the exact value of  $\arg(z_1^4 w^*)$ . [3]

Answers

$$p = -5, q = 10$$

(i) 
$$z_2 = \frac{1}{2}, z_3 = 1 + \sqrt{3}i$$

(ii) 
$$z_1 = 2e^{-\frac{\pi}{3}i}$$
,  $w = 2e^{\frac{\pi}{4}i}$ 

(iii) rhombus

(iv) 
$$\frac{5\pi}{12}$$



It is given that  $z = \sqrt{3} + i$  and w = -1 + i.

- (i) Without using a calculator, find an exact expression for  $\frac{z^2}{w^*}$ . Give your answer in the form  $re^{i\theta}$ , where r > 0 and  $-\pi < \theta \le \pi$ .
- (ii) Find the exact value of the real number q such that  $\arg\left(1-\frac{q}{z}\right) = \frac{\pi}{12}$ . [3]

Answers

(i) 
$$2^{\frac{3}{2}} e^{-i\frac{11\pi}{12}}$$
 (ii)  $q = \sqrt{3} - 1$ 

| 13C 11Chm 7/30/201//02/Q3                                                                                                |                                                                              |
|--------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| Do not use a calculator in answering this question.                                                                      |                                                                              |
| Given that $z = 1 + i$ is a root of the equation $2z^4 + az^3 + 7z^2 + bz$ real numbers $a$ and $b$ and the other roots. | +2=0, find the values of the [5]                                             |
| Deduce the roots of the equation $2z^4 + bz^3 + 7z^2 + az + 2 = 0$ .                                                     | [2]                                                                          |
|                                                                                                                          | Answers                                                                      |
|                                                                                                                          | $a = -5$ , $b = -4$ , $1 - i$ , $\frac{1 \pm \sqrt{7}i}{4}$ ;                |
|                                                                                                                          | $\frac{1-i}{2}, \frac{1+i}{2}, \frac{1-\sqrt{7}i}{2}, \frac{1+\sqrt{7}i}{2}$ |



VJC Prelim 9758/2017/02/O3