2017 H2 MA Prelim Compilation - Sigma Notation and MOD (20 Questions)

	AJC	Prelim 9758/2017/01/Q4	
	(a)	Given that $\sum_{n=1}^{N} \frac{1}{4n^2 - 1} = \frac{1}{2} - \frac{1}{2(2N+1)}$, find $\sum_{n=1}^{2N} \frac{1}{4(n+1)^2 - 1}$.	
		Deduce that $\sum_{n=1}^{2N} \frac{1}{(2n+3)^2}$ is less than $\frac{1}{6}$.	[5]
	(b)	The sum to <i>n</i> terms of a series is given by $S_n = n \ln 2 - \frac{n^2 - 1}{e}$.	
		Find an expression for the n^{th} term of the series, in terms of n . Show that the terms of the series follow an arithmetic progression.	[4]
┢			Answers
			1 1
		(a)	$\overline{6}^{-}\overline{2(4N+3)}$
		(b)	$\ln 2 - \frac{1}{e}(2n-1)$
	1	(0)	U

CJC	Prelim 9758/2017/01/Q3	
(i)	Express $\frac{r+1}{(r+2)!}$ in the form $\frac{A}{(r+1)!} + \frac{B}{(r+2)!}$, where A and	<i>B</i> are integers to be found.
		[2]
(ii)	Find $\sum_{r=1}^{n} \frac{r+1}{3(r+2)!}$.	[3]
(iii)	Hence, evaluate $\sum_{r=0}^{\infty} \frac{r+1}{3(r+2)!}$.	[2]
	KIASU ExamPaper	Answers (i) $\frac{1}{(r+1)!} - \frac{1}{(r+2)!}$ (ii) $\frac{1}{3} \left[\frac{1}{2} - \frac{1}{(n+2)!} \right]$ (iii) $\frac{1}{3}$

DHS Prelim 9758/2017/01/Q1

 Given that
$$\sum_{k=1}^{n} k! (k^2 + 1) = (n+1)! n$$
, find $\sum_{k=1}^{n-1} (k+1)! (k^2 + 2k + 2)$.
 [3]

 Answers

 $(n+1)! n - 2$

DHS Prelim 9758/2017/01/Q2A geometric sequence T_1, T_2, T_3, \dots has a common ratio of e. Another sequence U_1, U_2, U_3, \dots is such that $U_1 = 1$ and $U_r = \ln T_r - 3$ for all $r \ge 1$.(i) Prove that the sequence U_1, U_2, U_3, \dots is arithmetic.(2)A third sequence W_1, W_2, W_3, \dots is such that $W_1 = \frac{1}{2}$ and $W_{r+1} = W_r + U_r$ for all $r \ge 1$.(ii) By considering $\sum_{r=1}^{n-1} (W_{r+1} - W_r)$, show that $W_n = \frac{1}{2}(n^2 - n + 1)$.(3)Answers

HCI Prelim 9758/2017/02/Q1

The sum, S_n , of the first *n* terms of a sequence u_1 , u_2 , u_3 , ... is given by

$$S_n = b - \frac{3a}{(n+1)!} ,$$

where a and b are constants.

(i) It is given that $u_1 = k$ and $u_2 = \frac{2}{3}k$, where k is a constant. Find a and b in terms of k.

(ii) Find a formula for u_n in terms of k, giving your answer in its simplest form. [2]

(iii) Determine, with a reason, if the series $\sum_{r=1}^{\infty} u_r$ converges. [1]

Answers (i) $a = \frac{2}{3}k$, b = 2k(ii) $U_n = \frac{2k}{n!} \left(\frac{n}{n+1}\right)$ (iii) $S_n \rightarrow 2k$, $\sum_{r=1}^{\infty} u_r$ converges

IJC Prelim 9758/2017/01/Q5

 A sequence
$$u_1, u_2, u_3, ...$$
 is such that

 $u_n = \frac{1}{2n^2(n-1)^2}$ and $u_{n+1} = u_n - \frac{2}{n(n-1)^2(n+1)^2}$, for all $n \ge 2$.

 (i) Find $\sum_{n=2}^{N} \frac{2}{n(n-1)^2(n+1)^2}$.

 (ii) Explain why $\sum_{n=2}^{\infty} \frac{2}{n(n-1)^2(n+1)^2}$ is a convergent series, and state the value of the sum to infinity.

 (iii) Using your answer in part (i), find $\sum_{n=1}^{N} \frac{2N}{(n+1)n^2(n+2)^2}$.

 (i) $\frac{1}{8} - \frac{1}{2N^2(N+1)^2}$

 (iii) $\frac{1}{8} = \frac{1}{2N^2(N+1)^2}$

 (iiii) $\frac{1}{8} = \frac{1}{2N^2(N+1)^2}$

JJC Prelim 9758/2017/01/Q3

(i) Using the formula for sin
$$P - \sin Q$$
, show that
 $\sin [(2r+1)\theta] - \sin [(2r-1)\theta] = 2\cos(2r\theta)\sin\theta$. [1]
(ii) Given that $\sin \theta \neq 0$, using the method of differences, show that
 $\sum_{r=1}^{n} \cos(2r\theta) = \frac{\sin [(2n+1)\theta] - \sin\theta}{2\sin\theta}$. [2]
(iii) Hence find $\sum_{r=1}^{n} \cos^2 \left(\frac{r\pi}{5}\right)$ in terms of n .
Explain why the infinite series
 $\cos^2 \left(\frac{\pi}{5}\right) + \cos^2 \left(\frac{2\pi}{5}\right) + \cos^2 \left(\frac{3\pi}{5}\right) + \dots$
is divergent. [3]
Answers
 $3(iii) \frac{\sin \frac{(2n+1)\pi}{5}}{4\sin \frac{\pi}{5}} - \frac{1}{4} + \frac{1}{2}n$

MJC Prelim 9758/2017/01/Q5(i) Prove by the method of differences that
$$\sum_{r=1}^{n} \frac{1}{r(r+1)(r+2)} = \frac{1}{4} - \frac{k}{2(n+1)(n+2)},$$
where k is a constant to be determined.(ii) Explain why
$$\sum_{r=1}^{\infty} \frac{1}{r(r+1)(r+2)}$$
 is a convergent series, and state its value.(iii) Using your answer in part (i), show that
$$\sum_{r=1}^{n} \frac{1}{(r+2)^3} < \frac{1}{4}.$$
(i) $k = 1$ (ii) $\frac{1}{4}$

NJC Prelim 9758/2017/01/Q2 (a) The sum, S_n , of the first *n* terms of a sequence $u_1, u_2, u_3, ...$ is given by $S_n = 3 + 7^{-2n} (n^2)$.

	(i)	Write down the value of $\sum_{r=1}^{\infty} u_r$.	[1]
	(ii)	Find a formula for u_n for $n \ge 2$ and leave it in the form 7^{-2n} g	(n), where $g(n)$
		is an expression in terms of <i>n</i> .	[2]
(b)	Show	w that $\sum_{r=1}^{n} \left(\int_{0}^{r} e^{x} - e^{x-1} dx \right) = e^{n} + ne^{-1} - (n+1).$	
	Dedu	uce the exact value of $\sum_{r=10}^{20} \left(\int_0^r e^{x+2} - e^{x+1} dx \right).$	[5]
			Answers
			Allsweis 3;
		7^{-2}	$^{n}(8n-7)(7-6n);$
		e	$e^{22} - e^{11} - 11e^2 + 11e^2$

[
	NYJC Prelim 9758/2017/01/Q1
	A board is such that the n^{th} row from the top has n tiles, and each row is labelled from left to
	right in ascending order such that the i^{th} tile is labelled i , where n and i are positive integers.
	1
	1 2
	1 2 3
	Given that $\sum_{r=1}^{n} r^2 = \frac{n(n+1)(2n+1)}{6}$, by finding the sum of the numbers in the r^{th} row, show
	that the sum of all the numbers in <i>n</i> rows of tiles is $\frac{1}{6}(n)(n+1)(n+2)$. [4]
	KIASU
	Example (/>) Answers

NYJC Prelim 9758/2017/01/Q5

 (i) By considering
$$f(r) - f(r+1)$$
, where $f(r) = \frac{\sqrt{r}}{2\sqrt{r+1}}$, find

 $\sum_{r=1}^{n} \frac{\sqrt{r} - \sqrt{r+1}}{(2\sqrt{r+1})(2\sqrt{r+1}+1)}$

 in terms of n .

 (ii) Hence, find $\sum_{r=1}^{\infty} \frac{\sqrt{r} - \sqrt{r+1}}{(2\sqrt{r+1})(2\sqrt{r+1}+1)}$.

 (iii) Find the smallest integer n such that

 $\sum_{r=1}^{n} \frac{\sqrt{r+1} - \sqrt{r+2}}{(2\sqrt{r+1}+1)(2\sqrt{r+2}+1)} < -0.1$.

 (i) $\frac{1}{3} - \frac{\sqrt{n+1}}{2\sqrt{n+1} + 1}$

 (ii) $-\frac{1}{6}$

 (iii) 57

PJC Prelim 9758/2017/01/Q2	
A sequence $u_0, u_1, u_2,$ is given by $u_0 = \frac{3}{2}$ and $u_n = u_{n-1} + 2^n - n$ for $n \ge 1$.	
(i) Find u_1 , u_2 and u_3 .	[3]
(ii) By considering $\sum_{r=1}^{n} (u_r - u_{r-1})$, find a formula for u_n in terms of n .	[5]
(i) $u_1 = \frac{5}{2}$ $u_2 = \frac{9}{2}$	Answers $u_3 = \frac{19}{2}$

(ii)
$$u_n = 2^{n+1} - \frac{1}{2} - \frac{n(n+1)}{2}$$

RI Prelim 9758/2017/02/Q2(a) (i) Show that
$$\frac{1}{r-1} - \frac{2}{r} + \frac{1}{r+1} = \frac{2}{r(r-1)(r+1)}$$
.[1](ii) Hence find $\sum_{r=3}^{n} \frac{4}{r(r-1)(r+1)}$.[1](iii) Hence find $\sum_{r=3}^{n} \frac{4}{r(r-1)(r+1)}$.[4](b) Amy and her brother Ben are saving money together for their family trip. In the first week of 2017, Amy saves \$25 and Ben saves \$2. In each subsequent week, Amy saves \$4 more than the amount she saved in the previous week, and Ben saves 22% more than the amount he saved in the previous week.(i) Which is the first week in which Ben saves more than Amy in that week?[2](ii) They need a combined total of \$2400 for the trip. How many complete weeks do Amy and Ben need to save before they can achieve their targeted amount?[2]Answers(a)(ii) $\frac{1}{3} - \frac{2}{n} + \frac{2}{n+1}$ (b)(i) 21st week (b)(ii) 23

RVF	IS Prelim 9758/2017/02/Q3	
(i)	Express $\frac{4r+6}{(r+1)(r+2)(r+3)}$ as partial fractions.	[1]
(ii)	Hence find $\sum_{r=1}^{n} \frac{4r+6}{(r+1)(r+2)(r+3)}$ in terms of <i>n</i> .	[3]
(iii)	Use your answer in part (ii) to find the sum of the infinite series	
	$\frac{3}{1\times2\times3} + \frac{5}{2\times3\times4} + \frac{7}{3\times4\times5} + \frac{9}{4\times5\times6} + \cdots$ Example of the second sec	[3]
		Answers
	(1) $4r+6$	1 2 3
	(1) $\frac{1}{(r+1)(r+2)(r+3)} =$	$\overline{r+1} + \overline{r+2} - \overline{r+3}$

(ii)
$$\frac{3}{2} - \left(\frac{1}{n+2} + \frac{3}{n+3}\right)$$

(iii) $\frac{5}{4}$

SAJC Prelim 9758/2017/02/Q2	
The function f is defined by $f: x \mapsto \frac{1}{x^2 - 1}, x \in \mathbb{R}, x > 1$.	
(i) Show that $\frac{2}{n-1} - \frac{3}{n} + \frac{1}{n+1} = \frac{An+B}{n^3 - n}$, where A and B are constants to be found.	[3]
(ii) Hence find $\sum_{r=2}^{n} \frac{2r+6}{r^3-r}$.	[4]
(iii) Use your answer to part (ii) to find $\sum_{r=2}^{n} \frac{2r+10}{(r+1)(r+2)(r+3)}.$	[1]
	Answers
	i) $\frac{n+3}{n^3-n}$
ii) 3	$-\frac{4}{n} + \frac{2}{n+1}$
iii) $\frac{5}{6} - \frac{1}{n}$	$\frac{4}{+2} + \frac{2}{n+3}$

SRJC	C Prelim 9758/2017/02/Q1	
(i)	Prove that $\frac{\sin(A-B)}{\cos A \cos B} = \tan A - \tan B$.	[1]
(ii)	Hence, by considering a suitable expression of <i>A</i> and <i>B</i> , find $\sum_{r=1}^{N} \frac{\sin x}{\cos[(r+1)x]\cos(rx)}.$	[3]
(iii)	Using your answer to part (ii), find $\sum_{r=1}^{N} \left(\frac{\sqrt{3}}{2\cos\frac{r\pi}{3}\cos\frac{(r+1)\pi}{3}} \right)$, leaving your terms of <i>N</i> .	answer in

(ii) $\tan(N+1)x - \tan x$ (iii) $\tan\left[\frac{(N+1)\pi}{3}\right] - \sqrt{3}$

TJC Prelim 9758/2017/02/Q1Given that
$$sin[(n+1)x] - sin[(n-1)x] = 2 cos nx sin x$$
, show that $\sum_{r=1}^{n} cos rx = \frac{sin(n+\frac{1}{2})x - sin\frac{1}{2}x}{2sin\frac{1}{2}x}$.[4]Hence express $cos^2(\frac{x}{2}) + cos^2(x) + cos^2(\frac{3x}{2}) + ... + cos^2(\frac{11x}{2})$ in the form $a(\frac{sin bx}{sin cx} + d)$, where a, b, c and d are real numbers.[3]Answers $\frac{1}{4}(\frac{sin\frac{23}{2}x}{sin\frac{1}{2}x} + 21)$

TPJC Prelim 9758/2017/01/Q7(i) Express $\frac{1}{r^2-1}$ in partial fractions, and deduce that $\frac{1}{r(r^2-1)} = \frac{1}{2} \left[\frac{1}{r(r-1)} - \frac{1}{r(r+1)} \right].$ (ii) Hence, find the sum, S_n , of the first n terms of the series $\frac{1}{2\times3} + \frac{1}{3\times8} + \frac{1}{4\times15} + \dots$.(iii) Explain why the series converges, and write down the value of the sum to infinity.(iv) Find the smallest value of n for which S_n is smaller than the sum to infinity by less than 0.0025.Answers

(ii) $\frac{1}{4} - \frac{1}{2(n+1)(n+2)}$ (iii) As $n \to \infty$, $\frac{1}{2(n+1)(n+2)} \to 0$. $\frac{1}{4} - \frac{1}{2(n+1)(n+2)} \to \frac{1}{4}$ Sum to infinity $= \frac{1}{4}$ (iv)13

YJC	Prelim 9758/2017/02/Q1	
(i)	Show that if $a_r = T_r - T_{r-1}$ for $r = 1, 2, 3,, and T_0 = 0$, then	
	$\sum_{r=1}^n a_r = T_n .$	[1]
(ii)	Deduce that $\sum_{r=1}^{n} \pi^{-r} \left[(1-\pi)r^2 + 2\pi r - \pi \right] = n^2 \pi^{-n}$.	[3]
(iii)	Hence, find the exact value of $\sum_{r=4}^{20} \pi^{-r} \Big[(1-\pi) r^2 + 2\pi r - \pi \Big].$	[2]
		Answers (iii) $400\pi^{-20} - 9\pi^{-3}$