	AJC Prelim 9758/2017/01/Q4			
	(a) (b)	Given that $\sum_{n=1}^{N} \frac{1}{4 n^{2}-1}=\frac{1}{2}-\frac{1}{2(2 N+1)}$, find $\sum_{n=1}^{2 N} \frac{1}{4(n+1)^{2}-1}$. Deduce that $\sum_{n=1}^{2 N} \frac{1}{(2 n+3)^{2}}$ is less than $\frac{1}{6}$. The sum to n terms of a series is given by $S_{n}=n \ln 2-\frac{n^{2}-1}{\mathrm{e}}$. Find an expression for the $n^{\text {th }}$ term of the series, in terms of n. Show that the terms of the series follow an arithmetic progression.		[5] [4]
			(a) (b)	$\begin{gathered} \text { Answers } \\ \frac{1}{6}-\frac{1}{2(4 N+3)} \\ \ln 2-\frac{1}{e}(2 n-1) \end{gathered}$

CJC Prelim 9758/2017/01/Q3

(i) Express $\frac{r+1}{(r+2)!}$ in the form $\frac{A}{(r+1)!}+\frac{B}{(r+2)!}$, where A and B are integers to be found.
(ii) Find $\sum_{r=1}^{n} \frac{r+1}{3(r+2)!}$.
(iii) Hence, evaluate $\sum_{r=0}^{\infty} \frac{r+1}{3(r+2) \text { ! }}$.
\qquad
Answers
(i) $\frac{1}{(r+1)!}-\frac{1}{(r+2)!}$
(ii) $\frac{1}{3}\left[\frac{1}{2}-\frac{1}{(n+2)!}\right]$
(iii) $\frac{1}{3}$

Given that $\sum_{k=1}^{n} k!\left(k^{2}+1\right)=(n+1)!n$, find $\sum_{k=1}^{n-1}(k+1)!\left(k^{2}+2 k+2\right)$.

DHS Prelim 9758/2017/01/Q2

A geometric sequence $T_{1}, T_{2}, T_{3}, \ldots$ has a common ratio of e. Another sequence $U_{1}, U_{2}, U_{3}, \ldots$ is such that $U_{1}=1$ and

$$
U_{r}=\ln T_{r}-3 \text { for all } r \geq 1
$$

(i) Prove that the sequence $U_{1}, U_{2}, U_{3}, \ldots$ is arithmetic.

A third sequence $W_{1}, W_{2}, W_{3}, \ldots$ is such that $W_{1}=\frac{1}{2}$ and $W_{r+1}=W_{r}+U_{r}$ for all $r \geq 1$.
(ii) By considering $\sum_{r=1}^{n-1}\left(W_{r+1}-W_{r}\right)$, show that $W_{n}=\frac{1}{2}\left(n^{2}-n+1\right)$.

HCI Prelim 9758/2017/02/Q1

The sum, S_{n}, of the first n terms of a sequence $u_{1}, u_{2}, u_{3}, \ldots$ is given by

$$
S_{n}=b-\frac{3 a}{(n+1)!},
$$

where a and b are constants.
(i) It is given that $u_{1}=k$ and $u_{2}=\frac{2}{3} k$, where k is a constant. Find a and b in terms of k.
(ii) Find a formula for u_{n} in terms of k, giving your answer in its simplest form.
(iii) Determine, with a reason, if the series $\sum_{r=1}^{\infty} u_{r}$ converges.
(i) $a=\frac{2}{3} k, b=2 k$
(ii) $U_{n}=\frac{2 k}{n!}\left(\frac{n}{n+1}\right)$
(iii) $S_{n} \rightarrow 2 k, \sum_{r=1}^{\infty} u_{r}$ converges

	IJC Prelim 9758/2017/01/Q5
	A sequence $u_{1}, u_{2}, u_{3}, \ldots$ is such that $u_{n}=\frac{1}{2 n^{2}(n-1)^{2}}$ and $u_{n+1}=u_{n}-\frac{2}{n(n-1)^{2}(n+1)^{2}}$, for all $n \geq 2$. (i) Find $\sum_{n=2}^{N} \frac{2}{n(n-1)^{2}(n+1)^{2}}$. (ii) Explain why $\sum_{n=2}^{\infty} \frac{2}{n(n-1)^{2}(n+1)^{2}}$ is a convergent series, and state the value of the sum to infinity. (iii) Using your answer in part (i), find $\sum_{n=1}^{N} \frac{2 N}{(n+1) n^{2}(n+2)^{2}}$.

(i) Using the formula for $\sin P-\sin Q$, show that

$$
\begin{equation*}
\sin [(2 r+1) \theta]-\sin [(2 r-1) \theta] \equiv 2 \cos (2 r \theta) \sin \theta \tag{1}
\end{equation*}
$$

(ii) Given that $\sin \theta \neq 0$, using the method of differences, show that

$$
\begin{equation*}
\sum_{r=1}^{n} \cos (2 r \theta)=\frac{\sin [(2 n+1) \theta]-\sin \theta}{2 \sin \theta} \tag{2}
\end{equation*}
$$

(iii) Hence find $\sum_{r=1}^{n} \cos ^{2}\left(\frac{r \pi}{5}\right)$ in terms of n.

Explain why the infinite series

$$
\cos ^{2}\left(\frac{\pi}{5}\right)+\cos ^{2}\left(\frac{2 \pi}{5}\right)+\cos ^{2}\left(\frac{3 \pi}{5}\right)+\ldots
$$

is divergent.

$$
3 \text { (iii) } \frac{\sin \frac{(2 n+1) \pi}{5}}{4 \sin \frac{\pi}{5}}-\frac{1}{4}+\frac{1}{2} n
$$

MJC Prelim 9758/2017/01/Q5

(i) Prove by the method of differences that

$$
\sum_{r=1}^{n} \frac{1}{r(r+1)(r+2)}=\frac{1}{4}-\frac{k}{2(n+1)(n+2)},
$$

where k is a constant to be determined.
(ii) Explain why $\sum_{r=1}^{\infty} \frac{1}{r(r+1)(r+2)}$ is a convergent series, and state its value.
(iii) Using your answer in part (i), show that $\sum_{r=1}^{n} \frac{1}{(r+2)^{3}}<\frac{1}{4}$.

Answers
(i) $k=1$
(ii) $\frac{1}{4}$

NJC Prelim 9758/2017/01/Q2

(a) The sum, S_{n}, of the first n terms of a sequence $u_{1}, u_{2}, u_{3}, \ldots$ is given by $S_{n}=3+7^{-2 n}\left(n^{2}\right)$.
(i) Write down the value of $\sum_{r=1}^{\infty} u_{r}$.
(ii) Find a formula for u_{n} for $n \geq 2$ and leave it in the form $7^{-2 n} g(n)$, where $g(n)$ is an expression in terms of n.
(b) Show that $\sum_{r=1}^{n}\left(\int_{0}^{r} \mathrm{e}^{x}-\mathrm{e}^{x-1} \mathrm{~d} x\right)=\mathrm{e}^{n}+n \mathrm{e}^{-1}-(n+1)$.

Deduce the exact value of $\sum_{r=10}^{20}\left(\int_{0}^{r} \mathrm{e}^{x+2}-\mathrm{e}^{x+1} \mathrm{~d} x\right)$.

$$
e^{22}-e^{11}-11 e^{2}+11 e
$$

	NYJC Prelim 9758/2017/01/Q1
	A board is such that the $n^{\text {th }}$ row from the top has n tiles, and each row is labelled from left to right in ascending order such that the $i^{\text {th }}$ tile is labelled i, where n and i are positive integers. Given that $\sum_{r=1}^{n} r^{2}=\frac{n(n+1)(2 n+1)}{6}$, by finding the sum of the numbers in the $r^{\text {th }}$ row, show that the sum of all the numbers in n rows of tiles is $\frac{1}{6}(n)(n+1)(n+2)$.
	Exarimaper Answers

	NYJC Prelim 9758/2017/01/Q5	
	(i) By considering $\mathrm{f}(r)-\mathrm{f}(r+1)$, where $\mathrm{f}(r)=\frac{\sqrt{r}}{2 \sqrt{r}+1}$, find $\sum_{r=1}^{n} \frac{\sqrt{r}-\sqrt{r+1}}{(2 \sqrt{r}+1)(2 \sqrt{r+1}+1)}$ in terms of n. (ii) Hence, find $\sum_{r=1}^{\infty} \frac{\sqrt{r}-\sqrt{r+1}}{(2 \sqrt{r}+1)(2 \sqrt{r+1}+1)}$. (iii) Find the smallest integer n such that $\sum_{r=1}^{n} \frac{\sqrt{r+1}-\sqrt{r+2}}{(2 \sqrt{r+1}+1)(2 \sqrt{r+2}+1)}<-0.1$	[3] [2] [3]
	(i)	Answers $\frac{1}{3}-\frac{\sqrt{n+1}}{2 \sqrt{n+1}+1}$ (ii) $-\frac{1}{6}$ (iii) 57

PJC Prelim 9758/2017/01/Q2

A sequence $u_{0}, u_{1}, u_{2}, \ldots$ is given by $u_{0}=\frac{3}{2}$ and $u_{n}=u_{n-1}+2^{n}-n$ for $n \geq 1$.
(i) Find u_{1}, u_{2} and u_{3}.
(ii) By considering $\sum_{r=1}^{n}\left(u_{r}-u_{r-1}\right)$, find a formula for u_{n} in terms of n.
ExamPaper $\begin{aligned} & \text { (i) } u_{1}=\frac{5}{2}\end{aligned}$
Answers
$u_{2}=\frac{9}{2}$
$u_{3}=\frac{19}{2}$
(ii) $u_{n}=2^{n+1}-\frac{1}{2}-\frac{n(n+1)}{2}$

RI Prelim 9758/2017/02/Q2

(a) (i) Show that $\frac{1}{r-1}-\frac{2}{r}+\frac{1}{r+1}=\frac{2}{r(r-1)(r+1)}$.
(ii) Hence find $\sum_{r=3}^{n} \frac{4}{r(r-1)(r+1)}$.
(There is no need to express your answer as a single algebraic fraction).
(b) Amy and her brother Ben are saving money together for their family trip. In the first week of 2017, Amy saves $\$ 25$ and Ben saves $\$ 2$. In each subsequent week, Amy saves $\$ 4$ more than the amount she saved in the previous week, and Ben saves 22% more than the amount he saved in the previous week.
(i) Which is the first week in which Ben saves more than Amy in that week?
(ii) They need a combined total of $\$ 2400$ for the trip. How many complete weeks do Amy and Ben need to save before they can achieve their targeted amount?

Answers
(a)(ii) $\frac{1}{3}-\frac{2}{n}+\frac{2}{n+1}$
(b)(i) 21 st week (b)(ii) 23

RVHS Prelim 9758/2017/02/Q3

(i) Express $\frac{4 r+6}{(r+1)(r+2)(r+3)}$ as partial fractions.
(ii) Hence find $\sum_{r=1}^{n} \frac{4 r+6}{(r+1)(r+2)(r+3)}$ in terms of n.
(iii) Use your answer in part (ii) to find the sum of the infinite series
$\frac{3}{1 \times 2 \times 3}+\frac{5}{2 \times 3 \times 4}+\frac{7}{3 \times 4 \times 5}+\frac{9}{4 \times 5 \times 6}+\cdots$.

Answers
(i) $\frac{4 r+6}{(r+1)(r+2)(r+3)}=\frac{1}{r+1}+\frac{2}{r+2}-\frac{3}{r+3}$

> (ii) $\frac{3}{2}-\left(\frac{1}{n+2}+\frac{3}{n+3}\right)$
> (iii) $\frac{5}{4}$

	SAJC Prelim 9758/2017/02/Q2
	The function f is defined by $\mathrm{f}: x \mapsto \frac{1}{x^{2}-1}, x \in \mathbb{R}, x>1$. (i) Show that $\frac{2}{n-1}-\frac{3}{n}+\frac{1}{n+1}=\frac{A n+B}{n^{3}-n}$, where A and B are constants to be found. (ii) Hence find $\sum_{r=2}^{n} \frac{2 r+6}{r^{3}-r}$. (iii) Use your answer to part (ii) to find $\sum_{r=2}^{n} \frac{2 r+10}{(r+1)(r+2)(r+3)}$.
	Answers i) $\frac{n+3}{n^{3}-n}$ ii) $3-\frac{4}{n}+\frac{2}{n+1}$ iii) $\frac{5}{6}-\frac{4}{n+2}+\frac{2}{n+3}$

> Answers
> (ii) $\tan (N+1) x-\tan x$
> (iii) $\tan \left[\frac{(N+1) \pi}{3}\right]-\sqrt{3}$

TJC Prelim 9758/2017/02/Q1

Given that $\sin [(n+1) x]-\sin [(n-1) x]=2 \cos n x \sin x$, show that

$$
\begin{equation*}
\sum_{r=1}^{n} \cos r x=\frac{\sin \left(n+\frac{1}{2}\right) x-\sin \frac{1}{2} x}{2 \sin \frac{1}{2} x} . \tag{4}
\end{equation*}
$$

Hence express

$$
\begin{equation*}
\cos ^{2}\left(\frac{x}{2}\right)+\cos ^{2}(x)+\cos ^{2}\left(\frac{3 x}{2}\right)+\ldots+\cos ^{2}\left(\frac{11 x}{2}\right) \tag{3}
\end{equation*}
$$

in the form $a\left(\frac{\sin b x}{\sin c x}+d\right)$, where a, b, c and d are real numbers.

Answers

$$
\frac{1}{4}\left(\frac{\sin \frac{23}{2} x}{\sin \frac{1}{2} x}+21\right)
$$

TPJC Prelim 9758/2017/01/Q7

(i) Express $\frac{1}{r^{2}-1}$ in partial fractions, and deduce that

$$
\begin{equation*}
\frac{1}{r\left(r^{2}-1\right)}=\frac{1}{2}\left[\frac{1}{r(r-1)}-\frac{1}{r(r+1)}\right] . \tag{2}
\end{equation*}
$$

(ii) Hence, find the sum, S_{n}, of the first n terms of the series

$$
\frac{1}{2 \times 3}+\frac{1}{3 \times 8}+\frac{1}{4 \times 15}+\ldots
$$

(iii) Explain why the series converges, and write down the value of the sum to infinity.
(iv) Find the smallest value of n for which S_{n} is smaller than the sum to infinity by less than 0.0025 .

> (ii) $\frac{1}{4}-\frac{1}{2(n+1)(n+2)}$
> (iii) As $n \rightarrow \infty, \frac{1}{2(n+1)(n+2)} \rightarrow 0$. $\frac{1}{4}-\frac{1}{2(n+1)(n+2)} \rightarrow \frac{1}{4}$ Sum to infinity $=\frac{1}{4}$

VJC Prelim 9758/2017/01/Q8

It is given that $\sum_{r=1}^{n} \frac{r^{2}}{3^{r}}=\frac{3}{2}-\frac{n^{2}+3 n+3}{2\left(3^{n}\right)}$.
(i) Find $\sum_{r=1}^{\infty} \frac{r^{2}+(-1)^{r}}{3^{r}}$.
(ii) Show that $\sum_{r=4}^{n} \frac{(r-2)^{2}}{3^{r-2}}=\frac{p}{q}-\frac{a n^{2}-a n+a}{2\left(3^{n-2}\right)}$, where a, p and q are integers to be determined.

