Module 5: Complex Numbers (Cartesian and Polar Form)

1. [2013/RVHS/I/7 First part] The complex numbers w and z satisfy the equations

$$\frac{w}{z} = \frac{3}{2}i$$
$$z^* - 2w = 4 + 4i.$$

Find w and z.

2. [2013/DHS/II/4]

The equation $z^4 - 4z^3 + az^2 - 20z + 25 = 0$, $a \in \mathbb{R}$, has a root ki, where k is a real number.

- (i) Explain clearly why there is more than one possible value for k. [1]
- (ii) Find the possible exact values of k and show that a = 10.Hence find the roots of the above equation. [7]
- (iii) Deduce the roots of the following equations in the form x + iy, where x and y are real,
 - (a) $w^4 + 4iw^3 10w^2 20iw + 25 = 0$, (b) $25v^4 - 20v^3 + 10v^2 - 4v + 1 = 0$. [4]

3. [2015/IJC/II/4(b)]

The complex number w is given by
$$\left(\frac{-\sqrt{3}+i}{\sqrt{2}-i\sqrt{2}}\right)^2$$
. Without using a calculator, find

- (i) w and the exact value of $\arg w$, [4]
- (ii) the set of values of *n*, where *n* is a positive integer, for which $w^n w^*$ is a real number. [4]

4. [2015/PJC/I/7(i)]

The polynomial P(z) has real coefficients. The equation P(z) = 0 has a root $re^{i\theta}$, where r > 0 and $0 < \theta \le \pi$. Write down a second root in terms of r and θ , and hence show that a quadratic factor of P(z) is $z^2 - 2rz\cos\theta + r^2$. [3]

5. [2015/HCI/10(a)]

The equation $z^3 - az^2 + 2az - 4i = 0$, where *a* is a constant, has a root *i*.

- (i) Briefly explain why i* may not necessarily be a root of the equation. [1]
- (ii) Show that a = 2 + i. [2]
- (iii) Hence, find the remaining roots of the equation in exact form. [5]

6. [2014/MJC/I/8(b)]

Show that
$$e^{i\frac{\theta}{2}} - e^{-i\frac{\theta}{2}} = 2i\sin\frac{\theta}{2}$$
. Hence show that $\frac{e^{i\theta}}{1 - e^{i\theta}} = \frac{1}{2}\left(i\cot\frac{\theta}{2} - 1\right)$. [4]

[4]

<u>Answers:</u> 1.

3.

z = -2 + 2i, w = -3 - 3i

2. (i) Since the coefficients of the equation are all real, by Conjugate Root Theorem, all complex roots must occur in conjugate pairs, where $k = \pm q$, q is a positive real number.

(ii)
$$z = \pm \sqrt{5}i, 2 \pm i$$

(iii) $w = \pm \sqrt{5}, \pm 1 - 2i;$
 $v = \pm \frac{i}{\sqrt{5}}, \frac{1}{5}(2 \pm i)$
(i) $|w| = 1$ and $\arg w = \frac{\pi}{6}$
(ii) $\{n : n \in \mathbb{Z}^+, n = 6k - 5, k \in \mathbb{Z}^+\}$
(i) It is not necessarily true because to conclude that i^* is a root, the coefficients

5. (i) It is not necessarily true because to conclude that i^* is a root, the coefficients of the equation must be real.

(iii)
$$z = 1 + \sqrt{3}i \text{ or } z = 1 - \sqrt{3}i$$

.....