Module 5: Complex Numbers (Cartesian and Polar Form)

1. [2013/RVHS/I/7 First part] The complex numbers w and z satisfy the equations

$$
\begin{align*}
\frac{w}{z} & =\frac{3}{2} \mathrm{i} \\
z^{*}-2 w & =4+4 \mathrm{i} \tag{4}
\end{align*}
$$

Find w and z.

2. [2013/DHS/II/4]

The equation $z^{4}-4 z^{3}+a z^{2}-20 z+25=0, a \in \mathbb{R}$, has a root $k i$, where k is a real number.
(i) Explain clearly why there is more than one possible value for k.
(ii) Find the possible exact values of k and show that $a=10$.

Hence find the roots of the above equation.
(iii) Deduce the roots of the following equations in the form $x+\mathrm{i} y$, where x and y are real,
(a) $w^{4}+4 \mathrm{i} w^{3}-10 w^{2}-20 \mathrm{i} w+25=0$,
(b) $25 v^{4}-20 v^{3}+10 v^{2}-4 v+1=0$.

3. $[2015 / \mathbf{I J C} / \mathbf{I I} / 4(b)]$

The complex number w is given by $\left(\frac{-\sqrt{ } 3+\mathrm{i}}{\sqrt{ } 2-\mathrm{i} \sqrt{ } 2}\right)^{2}$. Without using a calculator, find
(i) $|w|$ and the exact value of $\arg w$,
(ii) the set of values of n, where n is a positive integer, for which $w^{n} w^{*}$ is a real number.

4. $\mathbf{[2 0 1 5 / P J C / I / 7 (i)] ~}$

The polynomial $\mathrm{P}(z)$ has real coefficients. The equation $\mathrm{P}(z)=0$ has a root $r \mathrm{e}^{\mathrm{i} \theta}$, where $r>$ 0 and $0<\theta \leq \pi$. Write down a second root in terms of r and θ, and hence show that a quadratic factor of $\mathrm{P}(z)$ is $z^{2}-2 r z \cos \theta+r^{2}$.

5. $[2015 / \mathrm{HCI} / 10(\mathrm{a})]$

The equation $z^{3}-a z^{2}+2 a z-4 \mathrm{i}=0$, where a is a constant, has a root i .
(i) Briefly explain why i^{*} may not necessarily be a root of the equation.
(ii) Show that $a=2+\mathrm{i}$.
(iii) Hence, find the remaining roots of the equation in exact form.
6. $[2014 / \mathrm{MJC} / \mathrm{I} / 8(\mathrm{~b})]$

Show that $\mathrm{e}^{\mathrm{i} \frac{\theta}{2}}-\mathrm{e}^{-\mathrm{i} \frac{\theta}{2}}=2 \mathrm{i} \sin \frac{\theta}{2}$. Hence show that $\frac{\mathrm{e}^{\mathrm{i} \theta}}{1-\mathrm{e}^{\mathrm{i} \theta}}=\frac{1}{2}\left(\operatorname{icot} \frac{\theta}{2}-1\right)$.

Answers:

1. $z=-2+2 \mathrm{i}, w=-3-3 \mathrm{i}$
2. (i) Since the coefficients of the equation are all real, by Conjugate Root Theorem, all complex roots must occur in conjugate pairs, where $k= \pm q, q$ is a positive real number.
(ii) $z= \pm \sqrt{5} \mathrm{i}, 2 \pm \mathrm{i}$
(iii) $\quad w= \pm \sqrt{5}, \pm 1-2 \mathrm{i}$;
$v= \pm \frac{\mathrm{i}}{\sqrt{5}}, \frac{1}{5}(2 \pm \mathrm{i})$
3. (ii) $|w|=1$ and $\arg w=\frac{\pi}{6}$
(iii) $\quad\left\{n: n \in \mathbb{Z}^{+}, n=6 k-5, \quad k \in \mathbb{Z}^{+}\right\}$
4. (i) It is not necessarily true because to conclude that i^{*} is a root, the coefficients of the equation must be real.
(iii) $z=1+\sqrt{3} \mathrm{i}$ or $z=1-\sqrt{3} \mathrm{i}$
