## Past Years Examination Questions

1


The diagram shows part of the curve $y=\mathrm{e}^{x}+\mathrm{e}^{-x}$ for $-1 \leq x \leq 1$. Find, to 2 decimal places, the area of the shaded region.
[6]
N2002/I/4


The diagram shows the shaded region bounded by the line $y=x+6$ and the curve $y=2+8 x-x^{2}$. Find the area of the shaded region.

N2002/I/13(a) (AO Maths)


The diagram shows part of the curve

$$
y=6 \sin \left(3 x+\frac{\pi}{4}\right) .
$$

Find the area of the shaded region bounded by the curve and the coordinate axes.
[6]
4
A curve has the equation $y=\mathrm{e}^{\frac{1}{2} x}+3 \mathrm{e}^{-\frac{1}{2} x}$.
Calculate the area enclosed by the curve, the $x$-axis and the lines $x=0$ and $x=1$.
N2004/I/12(iii) (OR)

5 The gradient at the point ( $x, y$ ) on a curve is given by $6 x-\frac{6}{x^{3}}$. The curve crosses the $x$-axis at the point $(0.5,0)$.
(i) Find the equation of the curve.
(ii) Show that the curve crosses the $x$-axis again where $x=2$.
(iii) Between $x=0.5$ and $x=2$ the curve lies below the $x$-axis. Find the area enclosed by this part of the curve and the $x$-axis.

N2004/I/15 (AO Maths)

6


The diagram shows part of the curve

$$
y=3 \sin 2 x+4 \cos x
$$

Find the area of the shaded region, bounded by the curve and the coordinate axes.
[5]
N2004/II/3

7


The diagram, which is not drawn to scale, shows part of the curve $y=x^{2}-10 x+24$ cutting the $x$-axis at $Q(4,0)$. The tangent to the curve at the point $P$ on the curve meets the coordinate axes at $S(0,15)$ and at $T(3.75,0)$.
(i) Find the coordinates of $P$.

The normal to the curve at $P$ meets the $x$-axis at $R$.
(ii) Find the coordinates of $R$.
(iii) Calculate the area of the shaded region bounded by the $x$-axis, the line $P R$ and the curve $P Q$. [5]

N2005/II/12 (EITHER)

8 The area of the region enclosed by the curve $y=2+\frac{2}{x+3}$, the $x$-axis and the lines $x=1$ and $x=5$, can be expressed as $a+\ln b$, where $a$ and $b$ are integers. Find the value of $a$ and of $b$.
N2005/I/13(b) (AO Maths)

9


The diagram shows part of the curve $y=4-\mathrm{e}^{-2 x}$ which crosses the axes at $A$ and at $B$.
(i) Find the coordinates of $A$ and of $B$.

The normal to the curve at $B$ meets the $x$-axis at $C$.
(ii) Find the coordinates of $C$.
(iii) Show that the area of the shaded region is approximately 10.3 square units.

N2006/I/12 (EITHER)

10


The diagram shows the line $y=-4 x+19$ intersecting the curve $y=-2 x^{2}+6 x+11$ at the points $A$ and $B$.
Find
(i) the coordinates of the points $A$ and $B$,
(ii) the area of the shaded region.
N2006/I/16 (EITHER) - AO Maths

11 The curve for which $\frac{\mathrm{d} y}{\mathrm{~d} x}=2+\cos 3 x$, passes through the point $(0,3)$.
(i) Find the equation of the curve.
(ii) Given that the curve lies above the $x$-axis between $x=0$ and $x=\frac{\pi}{3}$, find the area of the region enclosed by the curve, the coordinate axes and the line $x=\frac{\pi}{3}$.
N2006/I/16 (OR) (AO Maths)

12 Given that $z=\frac{x}{\left(x^{2}+32\right)^{\frac{1}{2}}}$, show that $\frac{\mathrm{d} z}{\mathrm{~d} x}=\frac{32}{\left(x^{2}+32\right)^{\frac{3}{2}}}$.
Find the exact value of the area of the region bounded by the curve $y=\frac{1}{3^{\frac{3}{2}}}$, the $x$-axis and $\left(x^{2}+32\right)^{\frac{3}{2}}$ the lines $x=2$ and $x=7$.

N2006/II/2 (Maths C)

13


The diagram shows part of the curve $y=\frac{6}{x^{2}}$. The normal to the curve at the point $(1,6)$ crosses the $y$-axis at the point $A$.
(i) Find the coordinates of $A$.

The shaded region shown, enclosed by the $x$-axis the curve and the lines $x=1$ and $x=a$, has an area of 4.5 square units.
(ii) Find the value of $a$.

N2007/I/16 (EITHER) (AO Maths)

14 (i) Differentiate $\ln (\sin x)$ with respect to $x$.
(ii)


The diagram shows part of the curve $y=\cot x$, cutting the $x$-axis at $\left(\frac{\pi}{2}, 0\right)$. The line $y=\sqrt{3}$ intersects the curve at $P$. A line is drawn from $P$, parallel to the $y$-axis, to meet the $x$-axis at $Q$. Use your result from part (i) to find the area of the shaded region.

N2007/I/5

15 The diagram shows part of the curve
$y=\cos x+\sqrt{3} \sin x$ crosses the $x$-axis at $(p, 0)$.

(i) Find the value of $p$.

The shaded region is bounded by the curve, the $y$-axis and the lines $y=3$ and $x=p$.
(ii) Find the area of the shaded region.

> N2007/I/16 (OR) (AO Maths)

16


The diagram shows part of the curve $y=\frac{16}{(5-x)^{2}}-1$, cutting the $x$-axis at $Q$. The tangent at the point $P$ on the curve cuts the $x$-axis at $A$. Given that the gradient of this tangent is 4 , calculate
(i) the coordinates of $P$,
(ii) the area of the shaded region $P Q A$.

N2007/II/12 (OR)
17 The diagram shows part of the curve $y=\frac{18}{(x+2)^{2}}-2$, cutting the axes at the points $P$ and $Q$. The normal to the curve at $P$ passes through the point $R$, where $Q R$ is parallel to the $x$-axis.

(i) Obtain an express for $\frac{\mathrm{d} y}{\mathrm{~d} x}$.
(ii) Show that the $x$-coordinate of $R$ is $4^{1 / 3}$.
(iii) Show that the area of the shaded region bounded by the curve and the lines $P R$ and $Q R$ is $5^{2} / 3$ units $^{2}$.

N2008/II/12 (EITHER) (Syll. 4018)
18 (i) Find $\int \frac{1}{\sqrt{2 x+3}} \mathrm{~d} x$.
(ii) Show that $\frac{\mathrm{d}}{\mathrm{d} x}\{(x-1) \sqrt{2 x+3}\}=\frac{3 x+2}{\sqrt{2 x+3}}$.
(iii)


The diagram shows part of the curve $y=\frac{3 x}{\sqrt{2 x+3}}$. Use the results from part (i) and (ii) to show that the area of the shaded region bounded by the curve, the line $x=3$ and the $x$-axis is $3 \sqrt{3}$ units $^{2}$.

N2008/II/12 (OR) (Syll. 4018)
19 The diagram shows part of the curve $y=x^{3}-a x+b$, where $a$ and $b$ are positive constants.


The curve has a minimum point at $(2,0)$.
Find
(i) the value of $a$ and of $b$,
(ii) the coordinates of the maximum point of the curve,
(iii) the area of the shaded region.

20


The diagram shows part of the curve $y=1+2 \cos x$, meeting the $x$-axis at the points $A$ and $B$.
(i) Show that the $x$-coordinate of $A$ is $\frac{2 \pi}{3}$ and find the $x$-coordinate of $B$.
(ii) Find the total area of the shaded regions. [6]

N2009/II/6

