1. [TYS 2007 (modified)]

- (a) Sketch, for the graphs of $y = \frac{20}{x+2}$ and $y = 10 x^2$ on the same axes. Show clearly on your diagram the equations of the asymptotes of $y = \frac{20}{x+2}$. [3]
- (b) The graphs intersect on the y-axis. Find, correct to 3 decimal places, the x-coordinates of the point of intersection for which x > 0.
- [1]

(c) Find $\int \frac{20}{x+2} dx$ and $\int (10-x^2) dx$.

- [3]
- (d) Use your answers to parts (b) and (c) to find the area of the region, in the first quadrant, between the two graphs.
- [2]

2. **[TYS 2009**]

- (a) Sketch the graphs of $y = \sqrt{x}$ and $y = \frac{1}{2}x$ on a single diagram and write down the coordinates of the points where $y = \sqrt{x}$ and $y = \frac{1}{2}x$ intersect.
- [2] [2]

[1]

[5]

- (b) Find $\int \sqrt{x} dx$ and $\int \frac{1}{2} x dx$.
- (c) Without using a calculator, find the area of the region between the two graphs. [2]
- 3. **[TYS 2008]**

The diagram shows the graphs of

$$C_1: y = 2x^2$$
 and $C_2: y = x^2 + k^2$,

where k is a positive constant. The graphs intersect at P and Q, as shown.

- (a) Show that the x-coordinates of P and Q are k and -k respectively.
- (b) Find the exact value of the area of the shaded region between C_1 and C_2 .

4. [TYS 2008 (modified)]

The diagram shows the curve C with the equation $y = \ln(2x + 4)$. The point P on C has coordinates $(1, \ln 6)$.

- (a) Find the coordinates of the intersection between C and the x-axis. [2]
- (b) Show that the exact equation of T is $y = \frac{1}{3}x \frac{1}{3} + \ln 6$. [3]
- (c) ** Find the numerical value of the area bounded by C, the tangent to C at P and the line $x = -\frac{3}{2}$. Leave your answer correct to 4 decimal places. [3]

Answers

- 1. (a) y = 0 and x = -2.
 - (b) 2.317.
 - (c) $\int \frac{20}{x+2} dx = 20 \ln|x+2| + C.$ $\int (10 x^2) dx = 10x \frac{x^3}{3} + C.$
 - (d) 3.64 units^2 .
- 2. (a) (0,0) and (4,2).
 - (b) $\int \sqrt{x} \, dx = \frac{2}{3}x^{\frac{3}{2}} + C.$ $\int \frac{1}{2}x \, dx = \frac{x^2}{4} + C.$
 - (c) $\frac{4}{3}$.
- 3. $\frac{4}{3}k^3$ units².
- 4. (a) $\left(-\frac{3}{2},0\right)$.
 - (c) 0.5625 units^2 .