1. [TYS 2007 (modified)]

(a) Sketch, for the graphs of $y=\frac{20}{x+2}$ and $y=10-x^{2}$ on the same axes. Show clearly on your diagram the equations of the asymptotes of $y=\frac{20}{x+2}$.
(b) The graphs intersect on the y-axis. Find, correct to 3 decimal places, the x-coordinates of the point of intersection for which $x>0$.
(c) Find $\int \frac{20}{x+2} \mathrm{~d} x$ and $\int\left(10-x^{2}\right) \mathrm{d} x$.
(d) Use your answers to parts (b) and (c) to find the area of the region, in the first quadrant, between the two graphs.
2. [TYS 2009]
(a) Sketch the graphs of $y=\sqrt{x}$ and $y=\frac{1}{2} x$ on a single diagram and write down the coordinates of the points where $y=\sqrt{x}$ and $y=\frac{1}{2} x$ intersect.
(b) Find $\int \sqrt{x} \mathrm{~d} x$ and $\int \frac{1}{2} x \mathrm{~d} x$.
(c) Without using a calculator, find the area of the region between the two graphs.

3. [TYS 2008]

The diagram shows the graphs of

$$
C_{1}: y=2 x^{2} \quad \text { and } \quad C_{2}: y=x^{2}+k^{2},
$$

where k is a positive constant. The graphs intersect at P and Q, as shown.
(a) Show that the x-coordinates of P and Q are k and $-k$ respectively.
(b) Find the exact value of the area of the shaded region between C_{1} and C_{2}.
4. [TYS 2008 (modified)]

The diagram shows the curve C with the equation $y=\ln (2 x+4)$. The point P on C has coordinates $(1, \ln 6)$.
(a) Find the coordinates of the intersection between C and the x-axis.
(b) Show that the exact equation of T is $y=\frac{1}{3} x-\frac{1}{3}+\ln 6$.
(c) ** Find the numerical value of the area bounded by C, the tangent to C at P and the line $x=-\frac{3}{2}$. Leave your answer correct to 4 decimal places.

Answers

1. (a) $y=0$ and $x=-2$.
(b) 2.317 .
(c) $\int \frac{20}{x+2} \mathrm{~d} x=20 \ln |x+2|+C$.

$$
\int\left(10-x^{2}\right) \mathrm{d} x=10 x-\frac{x^{3}}{3}+C
$$

(d) 3.64 units 2.
2. (a) $(0,0)$ and $(4,2)$.
(b) $\int \sqrt{x} \mathrm{~d} x=\frac{2}{3} x^{\frac{3}{2}}+C$. $\int \frac{1}{2} x \mathrm{~d} x=\frac{x^{2}}{4}+C$.
(c) $\frac{4}{3}$.
3. $\frac{4}{3} k^{3}$ units 2.
4. (a) $\left(-\frac{3}{2}, 0\right)$.
(c) 0.5625 units 2.

