Basic Questions

1. [Unit vectors]

$\mathbf{b}=(-3 \mathbf{i}+\mathbf{j}+4 \mathbf{k})$. Find, in exact form,
(a) $\hat{\mathbf{b}}$,
(b) 2 different vectors parallel to b with length 3 .

2. [Parallel vectors/collinear points]

(a) The points $A(1,0,5), B(2,1,4)$ and $C(x, y, 7)$ are collinear. Evaluate x and y.
(b) Points C and D have position vectors $((\lambda-2) \mathbf{i}+\mathbf{j}+5 \mathbf{k})$ and $(-\lambda \mathbf{i}+\lambda \mathbf{j}+\lambda 5 \mathbf{k})$ respectively. Show that $\overrightarrow{C D}$ is parallel to the vector $(-2 \mathbf{i}+\mathbf{j}+5 \mathbf{k})$ for all $\lambda \in \mathbb{R}, \lambda \neq 1$.
3. [Dot and cross products]
(a) Prove that $(t \mathbf{i}-t \mathbf{j}+2 t \mathbf{k})$ is perpendicular to $(\mathbf{i}-\mathbf{j}-\mathbf{k})$ for all values of t.
(b) It is given that $(t \mathbf{i}-t \mathbf{j}+2 \mathbf{k})$ is perpendicular to ($3 \mathbf{i}-\mathbf{j}+\mathbf{k}$). Find the value of t.
(c) Find, in terms of t, a vector perpendicular to both $(t \mathbf{i}-t \mathbf{j}+2 \mathbf{k})$ and $(3 \mathbf{i}-\mathbf{j}+\mathbf{k})$.
4. [Equations of lines and planes]
(a) Find, in all the 3 different forms (vector, parametric and cartesian) the equation of the line l passing through points $A(1,0,5)$ and $B(3,-2,5)$.
(b) Find, in all the 3 different forms (vector/parametric, scalar product form and cartesian) the equation of the plane Π passing through the point $A(2,0,2), B(3,-2,5)$ and $C(1,0,5)$.

5. [Distances]

(a) Find the distance between $A(0,1,5)$ and the line

$$
l: \mathbf{r}=\left(\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right)+\lambda\left(\begin{array}{c}
0 \\
1 \\
-5
\end{array}\right), \quad \lambda \in \mathbb{R} .
$$

(b) Find the distance between $B(1,0,-3)$ and the plane

$$
\Pi: x+2 y-z=7 .
$$

6. [Intersections and angles]

$$
\begin{aligned}
& l_{1}: \mathbf{r}=\left(\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right)+\lambda\left(\begin{array}{c}
0 \\
1 \\
-5
\end{array}\right), \quad \lambda \in \mathbb{R}, \\
& l_{2}: \mathbf{r}=\left(\begin{array}{c}
3 \\
2 \\
1
\end{array}\right)+\mu\left(\begin{array}{l}
1 \\
1 \\
3
\end{array}\right), \quad \mu \in \mathbb{R}, \\
& p_{1}: \mathbf{r} \cdot\left(\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right)=0, \\
& p_{2}: \mathbf{r} \cdot\left(\begin{array}{c}
7 \\
1 \\
-1
\end{array}\right)=3 .
\end{aligned}
$$

(a) Find the angle between l_{1} and l_{2}.
(b) Find the angle between l_{1} and p_{1}.
(c) Find the coordinates of the point of intersection between l_{1} and l_{2}.
(d) Find the position vector of the point of intersection between l_{1} and p_{1}.
(e) Find the equation of the line of intersection between p_{1} and p_{2}.

7. [Foot of perpendiculars and reflections]

(Use l_{1} AND p_{1} FROM QUESTION 8)
A point C has position vector $2 \mathbf{i}-3 \mathbf{j}+5 \mathbf{k}$.
(a) Find the position vector of the foot of perpendicular from C to l_{1}.
(b) Find the position vector of the foot of perpendicular from C to p_{1}.
(c) Hence find the position vector of C^{\prime}, the point obtained when C is reflected in p_{1}.
8. [Relationship between lines/planes]

$$
\begin{aligned}
& l_{1}: \mathbf{r}=\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right)+\lambda\left(\begin{array}{l}
1 \\
1 \\
3
\end{array}\right), \quad \lambda \in \mathbb{R}, \\
& l_{2}: \mathbf{r}=\left(\begin{array}{l}
1 \\
0 \\
2
\end{array}\right)+\mu\left(\begin{array}{l}
2 \\
1 \\
3
\end{array}\right), \quad \mu \in \mathbb{R}, \\
& p: \mathbf{r} \cdot\left(\begin{array}{l}
1 \\
2 \\
a
\end{array}\right)=b,
\end{aligned}
$$

(a) Show that l_{1} and l_{2} are skew lines.
(b) It is given that l_{1} lies in p. Find the values of a and b.
(c) It is given that l_{2} and p are parallel (and non-intersecting). Find a. What can you say about b ?
(d) It is given that l_{2} and p intersect at exactly one point. What can you say about a ?

Numerical Answers

1. $\frac{1}{\sqrt{26}}(-3 \mathbf{i}+\mathbf{j}+4 \mathbf{k})$. $\pm \frac{3}{\sqrt{26}}(-3 \mathbf{i}+\mathbf{j}+4 \mathbf{k})$.
2. $x=-1, y=-2$.
3. $t=\frac{1}{2}$.
$(2-t) \mathbf{i}+(6-t) \mathbf{j}+2 t \mathbf{k}$.
4. (a) $l: \mathbf{r}=(\mathbf{i}+5 \mathbf{k})+\lambda(\mathbf{i}-\mathbf{j}), \quad \lambda \in \mathbb{R}$.
$l: x=1+\lambda, y=-\lambda, z=5$.
$l: x-1=-y, z=5$.
(b) $\Pi: \mathbf{r}=(2 \mathbf{i}+2 \mathbf{k})+\lambda(\mathbf{i}-\mathbf{j})+\mu(\mathbf{i}-2 \mathbf{j}+3 \mathbf{k}), \quad \lambda, \mu \in \mathbb{R}$.
$\Pi: \mathbf{r} \cdot(3 \mathbf{i}+3 \mathbf{j}+\mathbf{k})=8$.
$\Pi: 3 x+3 y+z=8$.
5. (a) $\sqrt{\frac{251}{26}}$.
(b) $\frac{3}{\sqrt{6}}$.
6. (a) 34.1°.
(b) 34.1°.
(c) $(1,0,-5)$.
(d) $\mathbf{i}+\frac{1}{2} \mathbf{j}+\frac{15}{2} \mathbf{k}$.
(e) $\left(\frac{2}{5} \mathbf{i}+\frac{1}{5} \mathbf{j}\right)+\nu\left(\frac{1}{15} \mathbf{i}+\frac{8}{15} \mathbf{j}+\mathbf{k}\right)$.
7. (a) $\frac{1}{26}(26 \mathbf{i}-53 \mathbf{j}+135 \mathbf{k})$.
(b) $\frac{1}{6}(25 \mathbf{i}-44 \mathbf{j}+43 \mathbf{k})$.
(c) $\frac{1}{3}(19 \mathbf{i}-35 \mathbf{j}+28 \mathbf{k})$.
8. (b) $a=-1, b=0$.
(c) $a=-\frac{4}{3}, b \neq-\frac{5}{3}$.
(d) $a \neq-\frac{4}{3}$.
