CATHOLIC JUNIOR COLLEGE

10 May 2018
3 hours

Additional Materials: List of Formulae (MF26)

READ THESE INSTRUCTIONS FIRST

Write your name and class on all the work you hand in.
Write in dark blue or black pen on both sides of the paper.
You may use a soft pencil for any diagrams or graphs.
Do not use staples, paper clips, highlighters, glue or correction fluid.
Answer all the questions.
Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.
You are expected to use a graphing calculator.
Unsupported answers from a graphing calculator are allowed unless a question specifically states otherwise.
Where unsupported answers from a graphing calculator are not allowed in a question, you are required to present the mathematical steps using mathematical notations and not calculator commands.
You are reminded of the need for clear presentation in your answers.

At the end of the examination, arrange your answers in NUMERICAL ORDER.
Place the entire question paper in front and fasten all your work securely together.
The number of marks is given in brackets [] at the end of each question or part question.

Name: \qquad Class: \qquad

Question	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	Total
Marks											
Total	6	7	10	8	12	10	13	10	13	11	$\mathbf{1 0 0}$

This document consists of 6 printed pages, including the cover page.

Section A: Pure Mathematics [66 marks]

1 By successively differentiating $\mathrm{e}^{x} \tan x$, find the Maclaurin series for $\mathrm{e}^{x} \tan x$, up to and including the term in x^{2}.
Hence find the Maclaurin's series for $\frac{\mathrm{e}^{x} \tan x}{(1+x)^{2}}$ up to and including the term in x^{2}.

2 (i) Find $\int x \sin k x d x$, where k is a positive constant.
(ii) Find the constants A, B and C such that $\cos 5 x \sin 3 x=A(\sin B x+\sin C x)$.
(iii) Hence find $\int 3 x \cos 5 x \sin 3 x d x$.

3 [It is given that the volume of a circular cone with base radius r and height h is $\frac{1}{3} \pi r^{2} h$ and the curved surface area is $\pi r l$ where l is the slant height of the cone.]

An open inverted conical trough is made of a metal sheet of fixed area of $9 \mathrm{~m}^{2}$ with negligible thickness. It is given that the conical trough has radius $r \mathrm{~m}$ and a slant height of $l \mathrm{~m}$ as shown in the diagram.

(i) Show that the volume V of the conical trough is given by $V=\frac{1}{3} r \sqrt{81-\pi^{2} r^{4}}$.
(ii) Determine the exact radius r which gives the maximum value of V, proving that it is a maximum.

It is given that $r=2 \mathrm{~m}$ and $l=2 \sqrt{5} \mathrm{~m}$. Water is pumped into the empty trough at a constant rate of $0.02 \mathrm{~m}^{3} / \mathrm{min}$.
(iii) Find the rate at which the height of the water level is increasing at the instant when the height of the water level is 1 m .

A curve C has parametric equations

$$
x=t+\sin t, \quad y=1-\cos t,
$$

where $-\frac{\pi}{4} \leq t \leq \pi$.
(i) Find the exact equation of the normal to the curve C at $t=\frac{\pi}{3}$.
(ii) Find the area of the region bounded by C, the x-axis and the normal to C at $t=\frac{\pi}{3}$.

5 When a caffeinated beverage is consumed, caffeine is absorbed from the digestive tract into the bloodstream, and subsequently eliminated from the bloodstream through first order kinetics.

Model used

The amount of caffeine in the digestive tract, s, is absorbed into the bloodstream at a rate proportional to the amount of caffeine remaining in the digestive tract, with a constant of proportionality 2 , with respect to time, t hours.

(i) Write down a differential equation relating s and t.

While the amount of caffeine c in the bloodstream increases as caffeine is absorbed from the digestive tract, it is also eliminated from the bloodstream at a rate proportional to the amount of caffeine c in the bloodstream, producing a net rate of change modelled by

$$
\frac{\mathrm{d} c}{\mathrm{~d} t}=2 s-\frac{c}{8}
$$

(ii) Hence, find in terms of time t, an expression for the amount of caffeine s in the digestive tract, and show that $\frac{\mathrm{d} c}{\mathrm{~d} t}=2 s_{0} \mathrm{e}^{-2 t}-\frac{c}{8}$, where s_{0} is the initial amount of caffeine in the digestive tract.
(iii) By using the substitution $c=x \mathrm{e}^{-\frac{1}{8} t}$, reduce the differential equation derived in part (ii) to a differential equation of the form $\frac{\mathrm{d} x}{\mathrm{~d} t}=\mathrm{f}(t)$.

Given that the amount of caffeine in the bloodstream is initially zero, show that the amount of caffeine in the bloodstream is given by $c=k s_{0}\left(\mathrm{e}^{-2 t}-\mathrm{e}^{-\frac{1}{8} t}\right)$, where k is a rational number to be determined.
(iv) State one assumption in the model used.

6 It is given that

$$
z^{3}+2 z^{2}+(k-8 \sqrt{2} i) z+8-4 \sqrt{2} k i=0
$$

where k is a real constant, has a real root.
(i) Show that -2 is the real root and find the value of k.
(ii) Hence find the other roots, giving your answers in exact cartesian form $a+\mathrm{i} b$.

7 A glass ornament $O A B C D E F G$ is a truncated pyramid on a rectangular base (see Figure below).
All dimensions are in centimetres. The point O is the origin with unit vectors \mathbf{i} along $O C, \mathbf{j}$ along $O A$ and \mathbf{k} vertically upwards.

(i) Find the cartesian equation of the surface $B C D E$.

Let M be the mid-point of side $F A$.
(ii) Find the shortest distance from B to the line $O M$, giving your answer in exact form.
(iii) Show that the lines $O G$ and $A F$ meet at the point P with coordinates $(5,10,40)$.
(iv) Find the angle between the surface $B C D E$ and the base $O A B C$ of the ornament.

Section B: Probability and Statistics [34 marks]

8 Three students from the School of Arts, four students from the School of Business and five students from the School of Science participate in a social networking activity. The activity requires them to sit at a round table .
(i) Find the number of different possible seating arrangements.

Let A be the event that all students from the School of Arts are separated from one another and B be the event that all students from the School of Business are seated together.
(ii) Find $\mathrm{P}(\mathrm{A})$.
(iii) Find $\mathrm{P}(B \mid A)$.
(iv) Determine if A and B are independent.

The activity organiser decides to give out prizes to n students. Assuming that each student has an equal chance of getting a prize,
(v) find the maximum value of n such that the probability that all prizes are given to students from the School of Science exceeds 0.01 .

9 The air pressure, in pounds per square inch (psi), of a basketball is a random variable X with distribution $\mathrm{N}\left(\mu, \sigma^{2}\right)$.
(i) It is known that $\mathrm{P}(X<7)=0.02275$ and $\mathrm{P}(X<9)=0.97725$. Write down the value of μ and show that $\sigma=0.5$.

The air pressure, in psi, of a volleyball is a random variable Y with distribution $\mathrm{N}\left(4.26,0.8^{2}\right)$.
(ii) Calculate the probability that a randomly chosen basketball and a randomly chosen volleyball each has air pressure exceeding 6 psi.
(iii) Calculate the probability that the sum of air pressures in a randomly chosen basketball and volleyball exceeds 12 psi.
(iv) Explain why the probability in part (ii) is smaller than that in part (iii).
(v) Calculate the probability that the sum of air pressures in 6 volleyballs is less than thrice the air pressure in a basketball. State clearly the mean and variance of any normal distribution you use in your calculation.
(vi) State an assumption for your calculations in parts (ii), (iii) and (v).

10 A retailer sells 5 grades of washing detergent, Grades A, B, C, D and E, with Grade A being the premium grade. The price of a bottle of detergent sold is denoted by X. The price and the probability at which each grade of detergent is sold are as follows:

Grade	A	B	C	D	E
Price per bottle, $\$ x$	22	19	16	13	10
$\mathrm{P}(X=x)$	$\frac{1}{12}$	$\frac{1}{4}$	a	$\frac{1}{3}$	$\frac{1}{6}$

Assuming that the bottles of detergent are sold independently, find
(i) a.
(ii) the expectation and variance of the price of one bottle of detergent.

In order to improve sales, the retailer decides to sell every bottle of detergent with a free towel which comes in different colours. The probability that a bottle of detergent is sold with a pink towel is p.
(iii) It is given that $p=0.2$.
(a) If a housewife buys 19 bottles of detergent, find the most likely number of bottles with a pink towel.
(b) If N bottles of detergent are packed in a box, find the least value of N such that the probability of getting at least two bottles with a pink towel in a box is more than 0.5 .
(iv) For an unknown value of p, it is given that if a housewife buys 20 bottles of detergent, the probability that she gets exactly 10 pink towels is 0.003237 , correct to 6 decimal places. By forming an equation in terms of p, find the possible values of p.

Section A: Pure Mathematics [66 marks]

1 Maclaurin's Series

Feedback

Most of the students did this part easily, though there were many variations in their presentations to find this series. A few students were penalized because they used the results found in MF26, they did not read the question with care (i.e. by successively differentiating ...).

Surprisingly, quite a significant number of students did not present the working properly or use the notation accurately, for instance, commonly seen presentation
$\frac{\mathrm{d}}{\mathrm{d} x}=\mathrm{e}^{x} \sec ^{2} x+\tan x, \frac{\mathrm{~d}^{2}}{\mathrm{~d} x^{2}}=\mathrm{e}^{x} \sec ^{2} x+\tan x$.
In addition, a surprising number made it quite unbelievably difficult for themselves by writing, for instance, $\frac{\mathrm{d} y}{\mathrm{~d} x}=\mathrm{e}^{x} \sec ^{2} x+\mathrm{e}^{x} \tan x=\frac{2 \mathrm{e}^{x}}{\cos 2 x+1}+\frac{\mathrm{e}^{x} \sin x}{\cos x}$ and differentiating it one more time using quotient rule. These students tend to spend some time to simplify and made unnecessary algebraic slips. Many students did not know how to differentiate $\sec ^{2} x$ with respect to x and many gave answer as $2 \sec x \tan x$.

$$
\begin{aligned}
\frac{\mathrm{e}^{x} \tan x}{(1+x)^{2}} & =\left(\mathrm{e}^{x} \tan x\right)(1+x)^{-2} \\
& =\left(x+x^{2}\right)(1+(-2) x+\ldots) \\
& =\left(x+x^{2}\right)(1-2 x+\ldots) \\
& =x+x^{2}-2 x^{2}+\ldots \\
& =x-x^{2}+\ldots
\end{aligned}
$$

Again, many students did not read the question carefully, they differentiate the terms and apply the Maclaurin series expansion to get the desired series, instead of using the previous series in the working; they gained no marks.

Page 2 of $\mathbf{2 5}$

2 Integration Techniques

Assessment Objectives	Solution	Feedback
Able to solve Integration by parts.	(i) $\begin{aligned} \int x \sin k x \mathrm{~d} x & =-\frac{x \cos k x}{k}+\int \frac{\cos k x}{k} \mathrm{~d} x \\ & =-\frac{x \cos k x}{k}+\frac{1}{k}\left[\frac{\sin k x}{k}\right]+C \\ & =\frac{\sin k x}{k^{2}}-\frac{x \cos k x}{k}+C \end{aligned}$	Majority of students knew that this part was to be solved by integration by parts. Commonly seen mistakes were wrong formula used, chose the wrong u and omitted constant k after integration. Many students did not introduce the constant of integration in the last step.
Able to apply the factor formulaue and apply the results obtained to solve the integral.	(ii) $\begin{aligned} \cos 5 x \sin 3 x & =\frac{1}{2}[\sin (5 x+3 x)-\sin (5 x-3 x)] \\ & =\frac{1}{2}(\sin 8 x-\sin 2 x) \end{aligned}$ (iii) $\begin{aligned} \int 3 x \cos 5 x \sin 3 x \mathrm{~d} x & =\int 3 x\left(\frac{1}{2} \sin 8 x-\frac{1}{2} \sin 2 x\right) \mathrm{d} x \\ & =\int \frac{3}{2} x \sin 8 x-\frac{3}{2} x \sin 2 x \mathrm{~d} x \\ & =\frac{3}{2} \int x \sin 8 x \mathrm{~d} x-\frac{3}{2} \int x \sin 2 x \mathrm{~d} x \\ = & \frac{3}{2}\left(\frac{\sin 8 x}{8^{2}}-\frac{x \cos 8 x}{8}\right)-\frac{3}{2}\left(\frac{\sin 2 x}{2^{2}}-\frac{x \cos 2 x}{2}\right)+C \\ = & \frac{3}{16}\left(\frac{\sin 8 x}{8}-x \cos 8 x\right)-\frac{3}{4}\left(\frac{\sin 2 x}{2}-x \cos 2 x\right)+C \end{aligned}$	Most students gained mark for this part though some algebraic slips in solving the unknown constants. Most of the students knew that they were to use previous part(s) to do. However, after substituting the $\cos 5 x \sin 3 x$, quite a number of students used integration by parts again without realising that the form obtained was similar to part (i). Also, some tend to omit the x terms in the working. Many students did not have the good habit to simplify answers and introduce the constant of integration.

3 Applications of Differentiation

Assessment Objectives	Solution	Feedback
Able to formulate the expression of curved surface area of cone and slant height (Pythagoras Thereom) and make h the subject. Express volume of cone V in terms of r only.	(i) $\begin{aligned} & \pi r l=9 \\ & \pi r \sqrt{r^{2}+h^{2}}=9 \\ & \sqrt{r^{2}+h^{2}}=\frac{9}{\pi r} \\ & r^{2}+h^{2}=\left(\frac{9}{\pi r}\right)^{2} \\ & h^{2}=\frac{81}{\pi^{2} r^{2}}-r^{2} \\ &=\frac{81-\pi^{2} r^{4}}{\pi^{2} r^{2}} \\ & h=\sqrt{\frac{81-\pi^{2} r^{4}}{\pi^{2} r^{2}}} \\ &=\frac{\sqrt{81-\pi^{2} r^{4}}}{\pi r} \\ & V=\frac{1}{3} \pi r^{2} h \\ &=\frac{1}{3} \pi r^{2}\left(\frac{\sqrt{81-\pi^{2} r^{4}}}{\pi r}\right) \\ &=\frac{1}{3} r \sqrt{81-\pi^{2} r^{4}} \end{aligned}$	Most students were able to identify the curved surface area $\pi r l$ and equate to 9 , making l the subject. Generally, students can prove the given volume equation with the exception of a significant majority who made the following mistakes: 1. Could not handle algebraic manipulation: $\times h=\sqrt{\frac{81-\pi^{2} r^{4}}{\pi^{2} r^{2}}}=\sqrt{81-\pi^{2} r^{4}} \quad \text { (unacceptable }$ to ignore denominator) \times Skip steps to show $V=\frac{1}{3} r \sqrt{81-\pi^{2} r^{4}}$ correctly and attempt to "smoke" the examiner. 2. Ridiculously show the wrong formula when $V=\frac{1}{3} r \sqrt{81-\pi^{2} r^{4}}$ is given in the question paper. 3. Fatal algebraic error: $\sqrt{81-\pi^{2} r^{4}}=9-\pi r ? ? ?$ (We cannot square root term by term this way!) 4. Some students do not even bother to show working until they reach the show result.
Able to differentiate given expression and find stationary yalue. Able to prove that V is a maximum by first/ second derivative test	(ii) $V=\frac{1}{3} r \sqrt{81-\pi^{2} r^{4}}$	Again, since formula is given in part (i), copy the correct formula and start to differentiate - this is evident throughout the cohort. Avoid careless mistakes please! Students generally know the standard procedure to solve: 1. Find $\frac{\mathrm{d} V}{\mathrm{~d} r}$ in terms of r

Page 4 of $\mathbf{2 5}$

Page 5 of $\mathbf{2 5}$
www.KiasuExamPaper.com

		V is a maximum when $r=\left(\frac{27}{\pi^{2}}\right)^{\frac{1}{4}}$ $2^{\text {nd }}$ derivative test $\begin{aligned} \frac{\mathrm{d} V}{\mathrm{~d} r} & =\left(81-\pi^{2} r^{4}\right)^{-\frac{1}{2}}\left(27-\pi^{2} r^{4}\right) \\ \frac{\mathrm{d}^{2} V}{\mathrm{~d} r^{2}} & =\left(81-\pi^{2} r^{4}\right)^{-\frac{1}{2}}\left(-4 \pi^{2} r^{3}\right)+\left(27-\pi^{2} r^{4}\right)\left(-\frac{1}{2}\right)\left(81-\pi^{2} r^{4}\right)^{-\frac{3}{2}}\left(-4 \pi^{2} r^{3}\right) \\ & =\left(81-\pi^{2} r^{4}\right)^{-\frac{1}{2}}\left(-4 \pi^{2} r^{3}\right)+\left(27-\pi^{2} r^{4}\right)\left(81-\pi^{2} r^{4}\right)^{-\frac{3}{2}}\left(2 \pi^{2} r^{3}\right) \end{aligned}$ When $r=\left(\frac{27}{\pi^{2}}\right)^{\frac{1}{4}} \Rightarrow r^{4}=\frac{27}{\pi^{2}}$ $\begin{aligned} & \frac{\mathrm{d}^{2} V}{\mathrm{~d} r^{2}} \\ & =\left(81-\pi^{2} r^{4}\right)^{-\frac{1}{2}}\left(-4 \pi^{2} r^{3}\right)+\left(27-\pi^{2} r^{4}\right)\left(-\frac{1}{2}\right)\left(81-\pi^{2} r^{4}\right)^{-\frac{3}{2}}\left(-4 \pi^{2} r^{3}\right) \\ & =\left(81-\pi^{2} r^{4}\right)^{-\frac{1}{2}}\left(-4 \pi^{2} r^{3}\right)<0 \text { (maximum) } \end{aligned}$	- Value or sign of $\frac{\mathrm{d}^{2} V}{\mathrm{~d} r^{2}}$ must be clearly shown. Some students evaluate the maximum V but it is not required in the question.
	Able to solve rate of change problems	(iii) Fig. 2	Majority of the students are not able to answer this question. If you had read the question carefully, the concept here involves identifying V as volume of the water at time t instead of volume of trough in part (i). Candidates should not use the formula given in part (i) as they are referring to two different quantities. Common procedural mistakes include: 1. Substituting $h=1$ in $V=\frac{1}{3} \pi r^{2} h$ 2. Writing $\frac{r}{1}=\frac{2}{4} \Rightarrow r=\frac{1}{2}$ straight away. 3. Defining $h=\sqrt{(2 \sqrt{5})^{2}-r^{2}}$ but all r, h and l vary with time.

Page 6 of $\mathbf{2 5}$

Page 7 of $\mathbf{2 5}$

4 Definite Integrals

Assessment Objectives	Solution	Feedback
Able to perform parametric differentiation. Able to find the equation of normal.	(i) $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\sin t}{1+\cos t}$ When $t=\frac{\pi}{3}$, $\begin{aligned} & x=\frac{\pi}{3}+\sin \frac{\pi}{3}=\frac{\pi}{3}+\frac{\sqrt{3}}{2}, \quad y=1-\cos \frac{\pi}{3}=\frac{1}{2} \\ & \therefore P\left(\frac{\pi}{3}+\frac{\sqrt{3}}{2}, \frac{1}{2}\right) . \\ & -\frac{1}{\frac{\mathrm{~d} y}{\mathrm{~d} x}}=-\frac{1+\cos t}{\sin t} \end{aligned}$ When $t=\frac{\pi}{3},-\frac{1}{\frac{\mathrm{~d} y}{\mathrm{~d} x}}=-\frac{1+\frac{1}{2}}{\frac{\sqrt{3}}{2}}=-\sqrt{3}$ Equation of the normal@P $\begin{aligned} y-\frac{1}{2} & =-\sqrt{3}\left(x-\frac{\pi}{3}-\frac{\sqrt{3}}{2}\right) \\ y & =-\sqrt{3} x+\frac{\sqrt{3}}{3} \pi+2 \end{aligned}$	Some students tried forming Cartesian equation of curve before differentiating (with some even substituting $\mathrm{t}=\frac{\pi}{3}$ while doing so!). We need to remind them that it is not always easy/useful to do so. Many students could not recall the exact values of trigonometric ratios of special angles such as $\sin \frac{\pi}{3}$. They were heavily penalized for this in this question. Students are expected and should be reminded to simplify their final answer to its simplest form and not leave the examiner to figure out expressions like " $y=\frac{3}{\sqrt{3}} x+\frac{3 \pi}{3 \sqrt{3}}+\frac{3 \sqrt{3}}{2 \sqrt{3}}+\frac{1}{2}$ ".
Able to use the aid of a sketch to find the area bounded by the region described. \qquad		Quite a number of students did not attempt this part. Many students sketched the graph of the curve wrongly as they blatantly disregard the given limits of t. As a result, some of them misinterpreted the described area as a wrong one.

Page $\mathbf{8}$ of $\mathbf{2 5}$
www.KiasuExamPaper.com

Page 9 of $\mathbf{2 5}$

5 Differential Equations

Assessment Objectives

Formulate a differential equation (DE) from description(s) in a contextual problem.

Explanation :

As the amount of caffeine s in the digestive tract decreases solely from absorption into the bloodstream,
$\frac{\mathrm{d} s}{\mathrm{~d} t}=-\binom{$ Absorption }{ rate }, where $\binom{$ Absorption }{ rate }$\propto s$,
s being the amount of caffeine remaining in the digestive tract.
$\Rightarrow \quad\binom{$ Absorption }{ rate }$=k s, k$ being a const. of
proportionality
Since $k=2$ (given constant of proportionality), $\binom{$ Absorption }{ rate }$=2 s \Rightarrow \frac{\mathrm{~d} s}{\mathrm{~d} t}=-2 s$.

Feedback
Only a minority of the candidates ($20-30 \%$) could accurately formulate a differential equation relating s and t from the context.
Many candidates were unable to recognize that the amount of caffeine remaining in the digestive tract was s itself, and had taken unnecessary steps to find erroneous expressions such as $(s-c)$ for the amount of caffeine remaining in the digestive tract, e.g.
writing $\frac{\mathrm{d} s}{\mathrm{~d} t} \propto(s-c) \boldsymbol{x}$.
Some others had mistaken the amount of caffeine c in the bloodstream for the amount of caffeine s left in the digestive tract,
e.g. writing $\frac{\mathrm{d} s}{\mathrm{~d} t} \propto c \boldsymbol{x}$ or $\frac{\mathrm{d} s}{\mathrm{~d} t}=2 c \boldsymbol{x}$.

Among candidates who could correctly recognize / point out that $\frac{\mathrm{d} s}{\mathrm{~d} t} \propto s$, many erroneously omitted a negative sign (-) in formulating the DE, e.g. writing $\frac{\mathrm{d} s}{\mathrm{~d} t}=2 s \boldsymbol{x}$, without recognizing that the rate of change in s (amount of caffeine in the digestive tract) is a rate of decrease / loss from the absorption into the bloodstream.

$\underset{\text { ExamPaper }}{\mathrm{KI}} \mathrm{ZB}^{\boldsymbol{b}}$

Use a given substitution relation to convert an existing DE into another of a specfic form (that's more readily solved).

Solve a DE using the method of direct integration.
(iii)

Considering given substitution relation $c=x \mathrm{e}^{-\frac{1}{8} t}$

$$
\begin{aligned}
& \frac{\mathrm{d} c}{\mathrm{~d} t}=\frac{\mathrm{d} x}{\mathrm{~d} t} \mathrm{e}^{-\frac{1}{8} t}+x\left(-\frac{1}{8} \mathrm{e}^{-\frac{1}{8} t}\right) \\
& \text { Since } \frac{\mathrm{d} c}{\mathrm{~d} t}=2 \mathrm{~s}_{0} \mathrm{e}^{-2 t}-\frac{c}{8} \\
& \frac{\mathrm{~d} x}{\mathrm{~d} t} \mathrm{e}^{-\frac{1}{8} t}+x\left(-\frac{1}{8} \mathrm{e}^{-\frac{1}{8} t}\right)=2 s_{0} \mathrm{e}^{-2 t}-\frac{1}{8}\left(\mathrm{e}^{-\frac{1}{8} t}\right) \\
& \begin{aligned}
& \frac{\mathrm{d} x}{\mathrm{~d} t}=2 s_{0} \mathrm{e}^{-2 t} \mathrm{e}^{\frac{1}{8} t} \\
& \quad=2 \mathrm{~s}_{0} \mathrm{e}^{-\frac{15}{8} t}
\end{aligned}
\end{aligned}
$$

Integrating this DE directly w.r.t. time t on both sides,

$$
x=\int 2 s_{0} \mathrm{e}^{-\frac{15}{8} t} \mathrm{~d} t
$$

$$
=-\frac{16}{15} S_{0} \mathrm{e}^{-\frac{15}{8} t}+A^{\prime}, \quad \text { where } A^{\prime} \text { is an arbitrary constant. }
$$

Substituting back to solve original DE, using initial conditions to derive a particular solution.

Many candidates were unable to fully carry out the substitution procedure to rewrite the DE into one that involves just the variables x, t and $\mathrm{d} x / \mathrm{d} t$, some stopping short of substituting away the $\mathrm{d} c / \mathrm{d} t$ in the DE, as it wasn't found in the first place. Some others attempted to find $\mathrm{d} c / \mathrm{d} t$ from the given substitution relation, but made mistakes in performing the differentiation, with errors stemming from:

- erroneously treating x as a constant, e.g.

$$
\frac{\mathrm{d} c}{\mathrm{~d} t}=x\left(-\frac{1}{8} \mathrm{e}^{-\frac{1}{8} t}\right) \boldsymbol{x}
$$

incorrect use of the product rule of differentiation, or incorrect use of the chain-rule of differentiation.

$$
\frac{\mathrm{d} c}{\mathrm{~d} t}=\mathrm{e}^{-\frac{1}{8} t}+x\left(-\frac{1}{8} \mathrm{e}^{-\frac{1}{8} t}\right) \boldsymbol{x}, \operatorname{miss} \frac{\mathrm{d} x}{\mathrm{~d} t} .
$$

Amongst candidates who could properly rewrite the DE via substitution as required (approx. 35-45\%) however, the majority could subsequently solve the DE to find x via the method of direct integration, with a few erroneously omitted the arbitrary constant of integration, and some others chose to stop after rewriting the DE .

Credit that were typically secured in answering this part of the question were mainly the method marks.

		At initial time $t=0, c=0$ (initial amount of caffeine in the bloodstream) $\begin{aligned} 0= & -\frac{16}{15} s_{0} \mathrm{e}^{-2(0)}+A^{\prime} \mathrm{e}^{-\frac{1}{8}(0)}, \quad 0 \\ A^{\prime}= & =-\frac{16}{15} s_{0}+A^{\prime} \\ \therefore c & =-\frac{16}{15} s_{0} \mathrm{e}^{-2 t}+\frac{16}{15} s_{0} \mathrm{e}^{-\frac{1}{8} t} \\ & =-\frac{16}{15} s_{0}\left(\mathrm{e}^{-2 t}-\mathrm{e}^{-\frac{1}{8} t}\right) \quad \text { (shown). } \end{aligned}$	
	Point out and explain a model's assumption(s), with reference to given context.	(iv) Point out any one of the following simplifying assumptions for the model used: 1. All the caffeine that enters the digestive tract is absorbed into the bloodstream, before being eliminated subsequently. 2. Caffeine is consumed only at a single point in time (i.e. the initial time $t=0$) and at no other point of time nor over any other time interval. 3. The constant of proportionality for the absorption rate remains at 2 throughout. Caffeine from the digestive tract goes only into the bloodstream, and is not directly lost from the digestive tract nor lost elsewhere. 5. The rate at which caffeine is absorbed into the bloodstream is solely dependent on the amount of caffeine in the digestive tract and not on other factors such as the concentration of caffeine in the	Only about a-third of the candidates overall secured the credit in answering this question part. A significant portion (more than a-third overall) left this part un-attempted. Amongst responses provided, a significant reason for failing to secure credit was due to asserting assumption(s) that were inconsistent with the model used (e.g. "rate of absorption/elimination is assumed to be constant" x - while the rate that's dependent on the respective amounts of caffeine in the digestive tract / bloodstream has to vary with time). Vague / unclear description in the answer, and not answering the question on providing an assumption (e.g. putting down details concerning suitability of model or details concerning a prediction by the model) were other significant reasons for not securing the credit in this part.

KIASU:

Assessment Objectives	Sol
Complex roots of polynomial equations	(i)

KIASU
ExamPaper

Denote the real root by x, then equating the real and imaginary parts separately, we have

$$
x^{3}+2 x^{2}+k x+8=0
$$

$$
-8 \sqrt{2} x-4 \sqrt{2} k=0
$$

So $k=-2 x$.
Substituting $k=-2 x$ into the first equation, we get
$x^{3}+2 x^{2}-2 x^{2}+8=0$
$x^{3}+8=0$
Since x is real, $x=-2$.
Thus, $k=-2 x=4$.
(ii)

The original equation factorizes into
$(z+2)\left(z^{2}+(4-8 \sqrt{2} i)\right)=0$
Solving $z^{2}+4-8 \sqrt{2} i=0$,
let $z=a+\mathrm{i} b$, where $a, b \in \mathbb{R}$, then
$(a+i b)^{2}+4-8 \sqrt{2} i=0$
We have
$a^{2}-b^{2}+4=0$

Solution

(i)
$2 a 68: \sqrt{2}=0$
$=$ Th
$a b=4 \sqrt{2}$
$b=\frac{4 \sqrt{2}}{a}$
Substituting $b=\frac{4 \sqrt{2}}{a}$ into $a^{2}-b^{2}+4=0$, we get $a^{4}+4 a^{2}-32=0$

Feedback

The question was very poorly done in general.
In the first part, most candidates managed to find the value of k by substituting the value of $z=-2$ into the equation. However, only a handful candidates considered the separation of the real and imaginary parts based on the given condition that there is a real root.

In the second part, many candidates used a very cumbersome algebra to find the factorization of the equation, and half of them even failed to factorize correctly. Again, only a minority of candidates proceeded with denoting the unknown z in cartesian form, as hinted by the question, to solve for the other roots. Quite a number of students took the square root of a complex number straightaway as if they were working with real roots.

The answers from the candidates reflect the following: 1. poor understanding of the question when the phrasing varies. In particular, once the value of k is found, which majority did, the second part resembles problems they have encountered in both lectures and tutorials. Yet most were clueless.
2. poor algebraic skills when the presence of letters and surds doubled the challenge of abstractness. There were cases when students failed to solve correctly after getting expressions like " $2 \mathrm{k}=8$ " or " $2=\mathrm{a}+2$ ".
3. poor grasp of some basic ideas such as the distinction and relation between "root" and "factor", or the necessity of considering the real and imaginary parts separately when dealing with the algebra of complex numbers.

| | $a^{2}=4$ or -8
 Since $a^{2} \geq 0, a^{2}=4$
 $a= \pm 2$

 The other two roots are

 $-2-2 \sqrt{2} \mathrm{i}$ and $2+2 \sqrt{2} \mathrm{i}$ | |
| :--- | :--- | :--- | :--- |

KIASU: $=7^{\circ}$
 ExamPaper

Page 16 of $\mathbf{2 5}$

7	Vectors			
	Assessment Objectives	Solution		Feedback
	Students to be able to find the Cartesian equation of a plane from a given 3D figure.	(i)	The surface is perpendicular to both $\overrightarrow{C D}$ and $\overrightarrow{C B}$, the normal vector is parallel to $\left(\begin{array}{c}-6 \\ 6 \\ 24\end{array}\right) \times\left(\begin{array}{c}0 \\ 20 \\ 0\end{array}\right)$. So we have $\mathbf{n}=\left(\begin{array}{c}-1 \\ 1 \\ 4\end{array}\right) \times\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)=-\left(\begin{array}{l}4 \\ 0 \\ 1\end{array}\right)$ Scalar product form is given by $\mathbf{r} \cdot\left(\begin{array}{l} 4 \\ 0 \\ 1 \end{array}\right)=\left(\begin{array}{c} 15 \\ 0 \\ 0 \end{array}\right) \cdot\left(\begin{array}{l} 4 \\ 0 \\ 1 \end{array}\right)=60$ So Cartesian equation is $4 x+z=60$	Most of the students who revised vectors could identify the two vectors parallel to the plane. A number of students did not know that to find the normal vector, it is enough to just find the vector product of the vectors in the lowest term, with big value constants appearing at subsequent steps, leading to further mistakes. Several students still are not familiar what Cartesian equation of a plane means, showing that fundamental concepts are not revised properly.
	ExamPaper		$\overrightarrow{O M}=\frac{1}{2}(\overrightarrow{O A}+\overrightarrow{O F})=\frac{1}{2}\left(\begin{array}{c} 3 \\ 34 \\ 24 \end{array}\right)$ Shortest distance is given by $\left\|\frac{\overrightarrow{O B} \times \overrightarrow{O M}}{\|\overrightarrow{O M}\|}\right\|=\frac{5}{2} \frac{\left(\left.\left(\begin{array}{l} 3 \\ 4 \\ 0 \end{array}\right) \times\left(\begin{array}{c} 3 \\ 34 \\ 24 \end{array}\right) \right\rvert\,\right.}{\frac{\sqrt{1741}}{2}}=\frac{\left.5\left(\begin{array}{c} 96 \\ -72 \\ 90 \end{array}\right) \right\rvert\,}{\sqrt{1741}}=\frac{750}{\sqrt{1741}}$	A common mistake is to assume that $\overrightarrow{O M}=\frac{1}{2}(\overrightarrow{F A})$. The correct method is to apply Ratio Theorem. Many students knew that they need to apply concept of length of projection but used the wrong pair of vectors. It is important to draw a diagram to check! Quite a number of students also did not express the answer in exact form, despite the question clearly stating so.

Page $\mathbf{1 7}$ of $\mathbf{2 5}$
www.KiasuExamPaper.com

			Followed by Pythagoras Theorem, shortest distance is $\sqrt{O B^{2}-\frac{725^{2}}{1741}}=\frac{750}{\sqrt{1741}}$	There are a number of wrong or sloppy use of notations.
	Students to be able to find the point of intersection of two lines, in context of a 3D figure.	(iii)	OG has equation: $\mathbf{r}=\lambda\left(\begin{array}{l}1 \\ 2 \\ 8\end{array}\right)$ while AF has equation: $\mathbf{r}=\left(\begin{array}{c}0 \\ 20 \\ 0\end{array}\right)+\mu\left(\begin{array}{c}1 \\ -2 \\ 8\end{array}\right)$, where $\lambda, \mu \in \mathbb{R}$ At point of intersection, $\begin{align*} & \lambda=\mu----(\mathbf{1}) \tag{2}\\ & 2 \lambda=20-2 \mu \end{align*}$ Solving, we have $\lambda=\mu=5$	Although most students could write down the equation of a line, the equations are either not complete or with the "r" missing at the start of the equation.
	Students to be able to find angle between two planes in context. ExamPaper	(iv)	$\cos \theta=\frac{\left(\begin{array}{l} 4 \\ 0 \\ 1 \end{array}\right) \cdot\left(\begin{array}{l} 0 \\ 0 \\ 1 \end{array}\right)}{\sqrt{17}} \Rightarrow \theta=\cos ^{-1}\left(\frac{1}{\sqrt{17}}\right)=1.33 \mathrm{rad}$ or 76.0°	Most students could do this part. However, some students rely on the given figure to identify the required angle which is not necessary. They need to remember that angle between two planes is simply the angle between their normal vectors.

Page $\mathbf{1 8}$ of $\mathbf{2 5}$

Section B: Probability and Statistics [34 marks]

8 Permutation and Combination, Probability			
	Assessment Objectives	Solution	Feedback
	Ability to find the number of arrangements of objects in a circle	(i) Number of different seating arrangement $=(12-1)!=39916800$	Majority of the students who attempted this part of the question could get the answer. Common mistakes made include: 1. Fail to read question properly and did not consider the circular arrangement. 2. $\frac{(12-1) \text { ! }}{3!4!5!}$ treating the students from the various schools as identical.
	Ability to find the number of arrangements of objects in a circle with restrictions (separation)	(ii) Number of arrangement where all students from College of Arts are separated $\begin{aligned} & =(9-1)!\times{ }^{9} C_{3} \times 3! \\ & =20321280 \\ & P(A) \\ & =\frac{20321280}{39916800}=\frac{28}{55} \end{aligned}$	Majority of the students were weak in calculating the number of arrangement where all students from College of Arts are separated. Students who attempted the complement method only considered the case where all 3 were seated together and fail to realise the case where 2 students may sit together. In addition, for students who realized the case where 2 students could sit together, they gave the answer $10!\times 2$! without realizing this value is double counted.
	Ability to calculate conditional probabilities involving arrangements of objects in a circle with restrictions (group and separation)	(iii) $\mathrm{P}(A \cap B)$ $\begin{aligned} & =\frac{(6-1)!\times 4!\times{ }^{6} C_{3} \times 3!}{39916800}=\frac{345600}{39916800}=\frac{2}{231} \\ & =\frac{P(B \mid A)}{\mathrm{P}(A)} \\ & =\frac{2 / 231}{28 / 55}=\frac{5}{294} \end{aligned}$	Majority of the students could recall the conditional probability formula but fail to calculate the respective probabilities required for the computation. Common mistakes made include: 1. $\mathrm{P}(B \mid A)=\frac{\mathrm{P}(A \cap B)}{\mathrm{P}(B)}$ 2. $\mathrm{P}(A \cap B)=\mathrm{P}(A) \mathrm{P}(B)$ 3. $\mathrm{P}(A \cap B)=\mathrm{P}(A)+\mathrm{P}(B)-\mathrm{P}(A \cup B)$ but could not find $P(A \cup B)$.

Page 19 of $\mathbf{2 5}$

Ability to determine independent events		$P(B)=\frac{(9-1)!\times 4!}{39916800}=\frac{967680}{39916800}=\frac{4}{165}$ From part (iii), $\mathrm{P}(B \mid A)=\frac{5}{294}$. Since $\mathrm{P}(B \mid A) \neq \mathrm{P}(B), A$ and B are not independent.	Most students were able to recall the condition for independence but were weak in the algebraic manipulation which resulted in a loss of rk. Common mistakes made include 1. Attempting to show $\mathrm{P}(B \mid A)=\mathrm{P}(A)$. 2. Attempting to show $\mathrm{P}(B \mid A) \neq 0$. 3. Attempting to show $\mathrm{P}(A) \mathrm{P}(B) \neq 0$.
Ability to find maximum value of a parameter given the range of a probability HOT	(v)	$\mathrm{P}(\text { all prizes are given to students from College of Science })=\frac{{ }^{5} C_{p}}{{ }^{12} C_{p}}$ Using GC, Hence, maximum p is 4 .	Almost all students could not do this part of the question and left it blank. Only 3 students in the cohort could do this part of the question although the previous parts were not well attempted.

9 Normal and Sampling Distribution

Assessment Objectives	Solution	Feedback
Able to solve for μ and σ by sketching normal curve and performing standardization.	(i) $\begin{aligned} \mathrm{P}(X>9) & =1-\mathrm{P}(X<9) \\ & =1-0.97725 \\ & =0.02275 \end{aligned}$ Since $\mathrm{P}(X<7)=\mathrm{P}(X>9)=0.02275$, $\begin{aligned} & \mu=\frac{7+9}{2}=8 \\ & \mathrm{P}(X<7)=0.02275 \\ & \mathrm{P}\left(Z<\frac{7-8}{\sigma}\right)=0.02275 \end{aligned}$ Using G.C. $\frac{7-8}{\sigma}=-2.00000445$ $\sigma=0.5$	Majority of students scored full marks for this part. However, only a handful of them solved for μ by symmetry. Instead, they standardized twice and solved by simultaneous equations. Students who made mistakes confused the continuous random variable with discrete. Mistakes include - table method to show σ - rewrite $\mathrm{P}(X<7)$ as $\mathrm{P}(X \leq 6)$ before standardization. Other mistakes include erroneously writing standardization formula as $\frac{\bar{x}-\mu}{\sigma^{2}}$
Able to find distribution of sum and multiples of independent, normal random variables.		A large number of students made mistakes in this part. They include - rewrite $\mathrm{P}(X>6)$ as $1-\mathrm{P}(X \leq 5)$ - add $\mathrm{P}(X>6)$ and $\mathrm{P}(Y>6)$ - leave $\mathrm{P}(X>6)$ and $\mathrm{P}(Y>6)$ as 2 separate answers. These students misinterpreted the requirement of the question. Majority of students scored full marks (or 1 mark) for this part. Mistakes include - add standard deviation instead of variance - key in σ^{2} instead of σ in the G.C.
	(iv) There are less cases in (ii) compared to (iii). For example, the case where $x=5$ and $y=8$ is belongs in (iii) but not in (ii).	This part was poorly attempted. Mistakes include - Describe air pressures in basketballs and volleyballs. These answers were irrelevant.

		- (ii) is a subset of (iii), without further explanation/examples. These answers were deemed insufficient.
	$\text { (v) } \quad \begin{aligned} & Y_{1}+Y_{2}+\ldots+Y_{6}-3 X \sim \mathrm{~N}\left(6(4.26)-3(8), 6\left(0.8^{2}\right)+3^{2}\left(0.5^{2}\right)\right) \\ & \sim \mathrm{N}(1.56,6.09) \\ & \mathrm{P}\left(Y_{1}+Y_{2}+\ldots+Y_{6}<3 X\right) \\ &= \mathrm{P}\left(Y_{1}+Y_{2}+\ldots+Y_{6}-3 X<0\right) \\ &= 0.264 \end{aligned}$	A large number of students made mistakes in this part. They include - consider $6 Y$ instead of $Y_{1}+Y_{2}+\ldots+Y_{6}$ - subtract instead of add variance - mix up X and Y
Able to state condition for sum and multiples of independent, normal random variables.	(vi) Air pressure in basketballs and volleyballs are independent.	This part was poorly attempted. Many students were unable to specify independence between the correct variables. Mistakes include - probabilities were independent - choice of basketball and volleyballs were independent - all events were independent Other mistakes include assuming - $\quad \mu$ and σ are fixed - air pressure is not affected by external factors These assumptions were not accepted because they are not specific to assumptions needed for calculations of random variables undergoing linear transformations.

10. Discrete Random Variable \& Binomial Distribution

Assessment Objectives	Solution$\text { (i) } \begin{aligned} & \frac{1}{6}+\frac{1}{3}+a+\frac{1}{4}+\frac{1}{12}=1 \\ & a=1-\frac{5}{6}=\frac{1}{6} \end{aligned}$					Feedback Most could get this part correct. Most could get this part right. A few made copying mistakes when calculating $\mathrm{E}(\mathrm{X})$ thus leading to error in $\operatorname{Var}(\mathrm{X})$ as well.
Able to apply concept that sum of probabilities in a probability distribution table is 1 .						
Able to find $\mathrm{E}(\mathrm{X})$ and $\operatorname{Var}(\mathrm{X})$ from a probability distribution table of a discrete random variable.	(ii) Expected revenue, $\begin{aligned} \mathrm{E}(X) & =10 \times \frac{1}{6}+13 \times \frac{1}{3}+16 \times \frac{1}{6}+19 \times \frac{1}{4}+22 \times \frac{1}{12} \\ & =\$ 15.25 \text { (exact value) } \end{aligned}$					
	$\begin{aligned} & \operatorname{Var}(X)=1 \\ & =\frac{10^{2}}{6}+\frac{13^{2}}{3} \\ & =\frac{219}{16} \\ & =13.6875 \end{aligned}$	$\begin{aligned} & \mathrm{E}\left(X^{2}\right)-[\mathrm{E}(X)]^{2} \\ & +\frac{16^{2}}{6}+\frac{19^{2}}{4}+ \end{aligned}$ (exact value)				Most students could get this part correct. A few could not remember the formula for $\operatorname{Var}(\mathrm{X})$.
Able to find the most likely value of a binomial distribution (as distinct from finding the mean of a binomial distribution)		random vari tergent with a 0.2)			number of 19 bottles.	About half the students used the GC and obsvd the probabilities to $4 \mathrm{~d} . \mathrm{p}$. and hence gave mode as 3 and 4 . Many students also confused mean with mode and used $n p=19 \times 0.2=3.8 \approx 4$ as the mode. Hopefully, making an error here will allow students to note the correct way to obtain the mode. Some issues: However, many students using the latest model GC TI84 Plus CE moved their cursor to the Y_{1} column and observed two different values for

Page 23 of $\mathbf{2 5}$

Page $\mathbf{2 4}$ of $\mathbf{2 5}$

		$p^{2}-p+0.1676310305=0$ Hence, $p=0.2130000531$ or 0.7869999469 $p \approx 0.213$ or 0.787	

KIASU =: Brebl $^{\circ}$
 ExamPaper

