Topic 11 Vectors - 1 The planes p_1 and p_2 have equations $\mathbf{r} \cdot \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix} = 1$ and $\mathbf{r} \cdot \begin{pmatrix} -1 \\ 2 \\ 1 \end{pmatrix} = 2$ respectively, and meet in a line l. - (i) Find the acute angle between p_1 and p_2 . [3] (ii) Find a vector equation of l. [4] (iii) The plane p_3 has equation 2x + y + 3z - 1 + k(-x + 2y + z - 2) = 0. Explain why l lies in p_3 for any constant k. Hence, or otherwise, find a cartesian equation of the plane in which both l and the point (2, 3, 4) lie. (2009/P1/10) - Relative to the origin O, two points A and B have position vectors given by $\mathbf{a} = 14\mathbf{i} + 14\mathbf{j} + 14\mathbf{k}$ and $\mathbf{b} = 11\mathbf{i} 13\mathbf{j} + 2\mathbf{k}$ respectively. - (i) The point P divides the line AB in the ratio 2:1. Find the coordinates of P. [2] (ii) Show that AB and OP are perpendicular. [2] - (iii) The vector \mathbf{c} is a unit vector in the direction of \overrightarrow{OP} . Write \mathbf{c} as a column vector, and give the geometrical meaning of $|\mathbf{a} \cdot \mathbf{c}|$. - (iv) Find $\mathbf{a} \times \mathbf{p}$, where \mathbf{p} is the vector \overrightarrow{OP} , and give the geometrical meaning of $|\mathbf{a} \times \mathbf{p}|$. Hence write down the area of triangle OAP. (2009/P2/2) 3 The position vectors **a** and **b** are given by $$\mathbf{a} = 2p\mathbf{i} + 3p\mathbf{j} + 6p\mathbf{k}$$ and $\mathbf{b} = \mathbf{i} - 2\mathbf{j} + 2\mathbf{k}$, where p > 0. It is given that $|\mathbf{a}| = |\mathbf{b}|$. (i) Find the exact value of p. [2] (ii) Show that $(\mathbf{a} + \mathbf{b}) \cdot (\mathbf{a} - \mathbf{b}) = 0$. [3] (2010/P1/1) - The line *l* has equation $\frac{x-10}{-3} = \frac{y+1}{6} = \frac{z+3}{9}$, and the plane *p* has equation x-2y-3z=0. - (i) Show that l is perpendicular to p. [2] The (i) The whei (ii) (iii) (iv) Refe The (i) (ii) (i) (ii) (iii) © Singapore As Questions © UC (ii) Find the coordinates of the point of intersection of l and p. [4] - (iii) Show that the point A with coordinates (-2, 23, 33) lies on l. Find the coordinates of the point B which is the mirror image of A in p. - (iv) Find the area of triangle *OAB*, where *O* is the origin, giving your answer to the nearest whole number. (2010/P1/10) 5 Referred to the origin O, the points A and B are such that $\overrightarrow{OA} = \mathbf{a}$ and $\overrightarrow{OB} = \mathbf{b}$. The point P on OA is such that OP : PA = 1 : 2, and the point Q on OB is such that OQ : QB = 3 : 2. The mid-point of PQ is M (see diagram). - (i) Find \overrightarrow{OM} in terms of **a** and **b** and show that the area of triangle OMP can be written as $k | \mathbf{a} \times \mathbf{b} |$, where k is a constant to be found. - (ii) The vectors a and b are now given by $$\mathbf{a} = 2p\mathbf{i} - 6p\mathbf{j} + 3p\mathbf{k}$$ and $\mathbf{b} = \mathbf{i} + \mathbf{j} - 2\mathbf{k}$, where p is a positive constant. Given that a is a unit vector, (a) find the exact value of p, [2] (b) give a geometrical interpretation of |a.b|, [1] c) evaluate $\mathbf{a} \times \mathbf{b}$. [2] (2011/P1/7) © Singapore Asia Publishers Pte Ltd Questions © UCLES & MOE - [2] - [4] the point st whole 0/P1/10) on OA is nt of PQ $k|\mathbf{a} \times \mathbf{b}|,$ [6] - 6 The plane p passes through the points with coordinates (4, -1, -3), (-2, -5, 2) and (4, -3, -2). - (i) Find a cartesian equation of p. [4] The line l_1 has equation $\frac{x-1}{2} = \frac{y-2}{-4} = \frac{z+3}{1}$ and the line l_2 has equation $\frac{x+2}{1} = \frac{y-1}{5} = \frac{z-3}{k}$, where k is a constant. It is given that l_1 and l_2 intersect. (ii) Find the value of k. [4] - (iii) Show that l_1 lies in p and find the coordinates of the point at which l_2 intersects p. [4] - (iv) Find the acute angle between l_2 and p. [3] (2011/P1/11) Referred to the origin O, the points A and B have position vectors a and b such that $$\mathbf{a} = \mathbf{i} - \mathbf{j} + \mathbf{k}$$ and $\mathbf{b} = \mathbf{i} + 2\mathbf{j}$. The point C has position vector c given by $\mathbf{c} = \lambda \mathbf{a} + \mu \mathbf{b}$, where λ and μ are positive constants. (i) Given that the area of triangle OAC is $\sqrt{(126)}$, find μ . [4] (ii) Given instead that $\mu = 4$ and that $OC = 5\sqrt{3}$, find the possible coordinates of C. [4] (2012/P1/5) - 8 (i) Find a vector equation of the line through the points A and B with position vectors $7\mathbf{i} + 8\mathbf{j} + 9\mathbf{k}$ and $-\mathbf{i} 8\mathbf{j} + \mathbf{k}$ respectively. [3] - (ii) The perpendicular to this line from the point C with position vector $\mathbf{i} + 8\mathbf{j} + 3\mathbf{k}$ meets the line at the point N. Find the position vector of N and the ratio AN : NB. [5] - (iii) Find a cartesian equation of the line which is a reflection of the line AC in the line AB. [4] (2012/P1/9) [2] [1] [2] 11/P1/7) The origin O and the points A, B and C lie in the same plane, where $\overrightarrow{OA} = \mathbf{a}$, $\overrightarrow{OB} = \mathbf{b}$ and $\overrightarrow{OC} = \mathbf{c}$ (see diagram). (i) Explain why c can be expressed as $c = \lambda a + \mu b$, for constants λ and μ . The point N is on AC such that AN : NC = 3 : 4. (ii) Write down the position vector of N in terms of \mathbf{a} and \mathbf{c} . (iii) It is given that the area of triangle ONC is equal to the area of triangle OMC, where M is the mid-point of OB. By finding the areas of these triangles in terms of a and b, find λ in terms of μ in the case where λ and μ are both positive. [5] (2013/P1/6) [1] Plane with (i) (ii) (iii) Refer OD: **(i)** (ii) (iii) The 1 **(i)** The 1 (ii) (iii) The v (i) (iii) © Singapore A Questions © U 15 13 - 10 The planes p_1 and p_2 have equations $\mathbf{r} \cdot \begin{pmatrix} 2 \\ -2 \\ 1 \end{pmatrix} = 1$ and $\mathbf{r} \cdot \begin{pmatrix} -6 \\ 3 \\ 2 \end{pmatrix} = -1$ respectively, and meet in the line l. - (i) Find the acute angle between p_1 and p_2 . [3] - (ii) Find a vector equation for l. [4] - (iii) The point A(4, 3, c) is equidistant from the planes p_1 and p_2 . Calculate the two possible values of c. (2013/P2/4) - 11 (i) Given that $\mathbf{a} \times \mathbf{b} = \mathbf{0}$, what can be deduced about the vectors \mathbf{a} and \mathbf{b} ? [2] - (ii) Find a unit vector **n** such that $\mathbf{n} \times (\mathbf{i} + 2\mathbf{j} 2\mathbf{k}) = \mathbf{0}$. [2] - (iii) Find the cosine of the acute angle between $\mathbf{i} + 2\mathbf{j} 2\mathbf{k}$ and the z-axis. [1] (2014/P1/3) | | Planes p and q are perpendicular. Plane p has equation $x + 2y - 3z = 12$. Plane q conwith equation $\frac{x-1}{2} = \frac{y+1}{-1} = \frac{z-3}{4}$. The point A on l has coordinates $(1, -1, 3)$. | |--|--| | [4] | (i) Find a cartesian equation of q . | | [4] | (ii) Find a vector equation of the line m where p and q meet. | | AB. Hence, or [5] | (iii) B is a general point on m . Find an expression for the square of the distance A otherwise, find the coordinates of the point on m which is nearest to A . | | Point C lies on | Referred to the origin O , points A and B have position vectors \mathbf{a} and \mathbf{b} respectively. | | and B , such that | OA, between O and A , such that $OC : CA = 3 : 2$. Point D lies on OB , between O at $OD : DB = 5 : 6$. | | [2] | (i) Find the position vectors \overrightarrow{OC} and \overrightarrow{OD} , giving your answers in terms of a and b . | | (b) , where λ is a a parameter μ . | (ii) Show that the vector equation of the line BC can be written as $\mathbf{r} = \frac{3}{5}\lambda\mathbf{a} + (1 - \lambda)$ parameter. Find in a similar form the vector equation of the line AD in terms of a | | C and <i>AD</i> meet [5] | (iii) Find, in terms of a and b , the position vector of the point E where the lines BC and find the ratio $AE : ED$. | | (2015/P1/7) | | | | The line L has equation $\mathbf{r} = \mathbf{i} - 2\mathbf{j} - 4\mathbf{k} + \lambda(2\mathbf{i} + 3\mathbf{j} - 6\mathbf{k})$. | | [2] | (i) Find the acute angle between L and the x -axis. | | | The point P has position vector $2\mathbf{i} + 5\mathbf{j} - 6\mathbf{k}$. | | find the point on
[5] | (ii) Find the points on L which are a distance of $\sqrt{33}$ from P . Hence or otherwise find L which is closest to P . | | [3]
(2015/P2/2) | (iii) Find a cartesian equation of the plane that includes the line L and the point P . | | onstants. | The vectors \mathbf{u} and \mathbf{v} are given by $\mathbf{u} = 2\mathbf{i} - \mathbf{j} + 2\mathbf{k}$ and $\mathbf{v} = a\mathbf{i} + b\mathbf{k}$, where a and b are co | | [2] | (i) Find $(\mathbf{u} + \mathbf{v}) \times (\mathbf{u} - \mathbf{v})$ in terms of a and b . | | $+\mathbf{v})\times(\mathbf{u}-\mathbf{v})$ in | (ii) Given that the i- and k-components of the answer to part (i) are equal, express (u terms of a only. Hence find, in an exact form, the possible values of a for which (in a partition of the components). | | $(\mathbf{u} + \mathbf{v}) \times (\mathbf{u} - \mathbf{v})$ [4] | is a unit vector. | - The plane p has equation $\mathbf{r} = \begin{pmatrix} 1 \\ -3 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 2 \end{pmatrix} + \mu \begin{pmatrix} 1 \\ 2 \end{pmatrix}$, and the line l has equation r =where a is a constant and λ , μ and t are parameters. - (i) In the case where a = 0, - (a) show that l is perpendicular to p and find the values of λ , μ and t which give the coordinates of the point at which l and p intersect, - (b) find the cartesian equations of the planes such that the perpendicular distance from each plane to p is 12. - (ii) Find the value of a such that l and p do not meet in a unique point. [3] (2016/P1/11) - 17 (i) Interpret geometrically the vector equation $\mathbf{r} = \mathbf{a} + t\mathbf{b}$, where \mathbf{a} and \mathbf{b} are constant vectors and tis a parameter. - (ii) Interpret geometrically the vector equation $\mathbf{r} \cdot \mathbf{n} = d$, where \mathbf{n} is a constant unit vector and d is a constant scalar, stating what d represents. - (iii) Given that $\mathbf{b} \cdot \mathbf{n} \neq 0$, solve the equations $\mathbf{r} = \mathbf{a} + t\mathbf{b}$ and $\mathbf{r} \cdot \mathbf{n} = d$ to find \mathbf{r} in terms of \mathbf{a} , \mathbf{b} , \mathbf{n} and d. Interpret the solution geometrically. (2017/P1/6) Electrical engineers are installing electricity cables on a building site. Points (x, y, z) are defined relative to a main switching site at (0, 0, 0), where units are metres. Cables are laid in straight lines and the widths of cables can be neglected. An existing cable C starts at the main switching site and goes in the direction installed which passes through points P(1, 2, -1) and Q(5, 7, a). (i) Find the value of a for which C and the new cable will meet. [4] To ensure that the cables do not meet, the engineers use a = -3. The engineers wish to connect each of the points P and Q to a point R on C. - (ii) The engineers wish to reduce the length of cable required and believe in order to do this that angle PRQ should be 90°. Show that this is not possible. - (iii) The engineers discover that the ground between P and R is difficult to drill through and now decide to make the length of PR as small as possible. Find the coordinates of R in this case and the exact minimum length. [5] (2017/P1/10) - 1 The o - **(i)** - (ii) - 2 - 3 Do no - (ii)] - Do no The c - (i) **H** - (ii) (- (iii) F