Topic 11 Vectors

- 1 The planes p_1 and p_2 have equations $\mathbf{r} \cdot \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix} = 1$ and $\mathbf{r} \cdot \begin{pmatrix} -1 \\ 2 \\ 1 \end{pmatrix} = 2$ respectively, and meet in a line l.
 - (i) Find the acute angle between p_1 and p_2 .

[3]

(ii) Find a vector equation of l.

[4]

(iii) The plane p_3 has equation 2x + y + 3z - 1 + k(-x + 2y + z - 2) = 0. Explain why l lies in p_3 for any constant k. Hence, or otherwise, find a cartesian equation of the plane in which both l and the point (2, 3, 4) lie.

(2009/P1/10)

- Relative to the origin O, two points A and B have position vectors given by $\mathbf{a} = 14\mathbf{i} + 14\mathbf{j} + 14\mathbf{k}$ and $\mathbf{b} = 11\mathbf{i} 13\mathbf{j} + 2\mathbf{k}$ respectively.
 - (i) The point P divides the line AB in the ratio 2:1. Find the coordinates of P.

[2]

(ii) Show that AB and OP are perpendicular.

[2]

- (iii) The vector \mathbf{c} is a unit vector in the direction of \overrightarrow{OP} . Write \mathbf{c} as a column vector, and give the geometrical meaning of $|\mathbf{a} \cdot \mathbf{c}|$.
- (iv) Find $\mathbf{a} \times \mathbf{p}$, where \mathbf{p} is the vector \overrightarrow{OP} , and give the geometrical meaning of $|\mathbf{a} \times \mathbf{p}|$. Hence write down the area of triangle OAP.

(2009/P2/2)

3 The position vectors **a** and **b** are given by

$$\mathbf{a} = 2p\mathbf{i} + 3p\mathbf{j} + 6p\mathbf{k}$$
 and $\mathbf{b} = \mathbf{i} - 2\mathbf{j} + 2\mathbf{k}$,

where p > 0. It is given that $|\mathbf{a}| = |\mathbf{b}|$.

(i) Find the exact value of p.

[2]

(ii) Show that $(\mathbf{a} + \mathbf{b}) \cdot (\mathbf{a} - \mathbf{b}) = 0$.

[3]

(2010/P1/1)

- The line *l* has equation $\frac{x-10}{-3} = \frac{y+1}{6} = \frac{z+3}{9}$, and the plane *p* has equation x-2y-3z=0.
 - (i) Show that l is perpendicular to p.

[2]

The

(i)

The

whei

(ii)

(iii)

(iv)

Refe

The

(i)

(ii)

(i)

(ii)

(iii)

© Singapore As

Questions © UC

(ii) Find the coordinates of the point of intersection of l and p.

[4]

- (iii) Show that the point A with coordinates (-2, 23, 33) lies on l. Find the coordinates of the point B which is the mirror image of A in p.
- (iv) Find the area of triangle *OAB*, where *O* is the origin, giving your answer to the nearest whole number.

(2010/P1/10)

5

Referred to the origin O, the points A and B are such that $\overrightarrow{OA} = \mathbf{a}$ and $\overrightarrow{OB} = \mathbf{b}$. The point P on OA is such that OP : PA = 1 : 2, and the point Q on OB is such that OQ : QB = 3 : 2. The mid-point of PQ is M (see diagram).

- (i) Find \overrightarrow{OM} in terms of **a** and **b** and show that the area of triangle OMP can be written as $k | \mathbf{a} \times \mathbf{b} |$, where k is a constant to be found.
- (ii) The vectors a and b are now given by

$$\mathbf{a} = 2p\mathbf{i} - 6p\mathbf{j} + 3p\mathbf{k}$$
 and $\mathbf{b} = \mathbf{i} + \mathbf{j} - 2\mathbf{k}$,

where p is a positive constant. Given that a is a unit vector,

(a) find the exact value of p,

[2]

(b) give a geometrical interpretation of |a.b|,

[1]

c) evaluate $\mathbf{a} \times \mathbf{b}$.

[2] (2011/P1/7)

© Singapore Asia Publishers Pte Ltd Questions © UCLES & MOE

- [2]
- [4]

the point

st whole

0/P1/10)

on OA is

nt of PQ

 $k|\mathbf{a} \times \mathbf{b}|,$ [6]

- 6 The plane p passes through the points with coordinates (4, -1, -3), (-2, -5, 2) and (4, -3, -2).
 - (i) Find a cartesian equation of p.

[4]

The line l_1 has equation $\frac{x-1}{2} = \frac{y-2}{-4} = \frac{z+3}{1}$ and the line l_2 has equation $\frac{x+2}{1} = \frac{y-1}{5} = \frac{z-3}{k}$, where k is a constant. It is given that l_1 and l_2 intersect.

(ii) Find the value of k.

[4]

- (iii) Show that l_1 lies in p and find the coordinates of the point at which l_2 intersects p. [4]
- (iv) Find the acute angle between l_2 and p.

[3]

(2011/P1/11)

Referred to the origin O, the points A and B have position vectors a and b such that

$$\mathbf{a} = \mathbf{i} - \mathbf{j} + \mathbf{k}$$
 and $\mathbf{b} = \mathbf{i} + 2\mathbf{j}$.

The point C has position vector c given by $\mathbf{c} = \lambda \mathbf{a} + \mu \mathbf{b}$, where λ and μ are positive constants.

(i) Given that the area of triangle OAC is $\sqrt{(126)}$, find μ .

[4]

(ii) Given instead that $\mu = 4$ and that $OC = 5\sqrt{3}$, find the possible coordinates of C.

[4] (2012/P1/5)

- 8 (i) Find a vector equation of the line through the points A and B with position vectors $7\mathbf{i} + 8\mathbf{j} + 9\mathbf{k}$ and $-\mathbf{i} 8\mathbf{j} + \mathbf{k}$ respectively. [3]
 - (ii) The perpendicular to this line from the point C with position vector $\mathbf{i} + 8\mathbf{j} + 3\mathbf{k}$ meets the line at the point N. Find the position vector of N and the ratio AN : NB. [5]
 - (iii) Find a cartesian equation of the line which is a reflection of the line AC in the line AB. [4]

(2012/P1/9)

[2]

[1] [2]

11/P1/7)

The origin O and the points A, B and C lie in the same plane, where $\overrightarrow{OA} = \mathbf{a}$, $\overrightarrow{OB} = \mathbf{b}$ and $\overrightarrow{OC} = \mathbf{c}$ (see diagram).

(i) Explain why c can be expressed as $c = \lambda a + \mu b$, for constants λ and μ .

The point N is on AC such that AN : NC = 3 : 4.

(ii) Write down the position vector of N in terms of \mathbf{a} and \mathbf{c} .

(iii) It is given that the area of triangle ONC is equal to the area of triangle OMC, where M is the mid-point of OB. By finding the areas of these triangles in terms of a and b, find λ in terms of μ in the case where λ and μ are both positive. [5]

(2013/P1/6)

[1]

Plane with

(i)

(ii)

(iii)

Refer

OD:

(i)

(ii)

(iii)

The 1

(i)

The 1

(ii)

(iii)

The v

(i)

(iii)

© Singapore A

Questions © U

15

13

- 10 The planes p_1 and p_2 have equations $\mathbf{r} \cdot \begin{pmatrix} 2 \\ -2 \\ 1 \end{pmatrix} = 1$ and $\mathbf{r} \cdot \begin{pmatrix} -6 \\ 3 \\ 2 \end{pmatrix} = -1$ respectively, and meet in the line l.
 - (i) Find the acute angle between p_1 and p_2 . [3]
 - (ii) Find a vector equation for l. [4]
 - (iii) The point A(4, 3, c) is equidistant from the planes p_1 and p_2 . Calculate the two possible values of c.

(2013/P2/4)

- 11 (i) Given that $\mathbf{a} \times \mathbf{b} = \mathbf{0}$, what can be deduced about the vectors \mathbf{a} and \mathbf{b} ? [2]
 - (ii) Find a unit vector **n** such that $\mathbf{n} \times (\mathbf{i} + 2\mathbf{j} 2\mathbf{k}) = \mathbf{0}$. [2]
 - (iii) Find the cosine of the acute angle between $\mathbf{i} + 2\mathbf{j} 2\mathbf{k}$ and the z-axis. [1]

(2014/P1/3)

	Planes p and q are perpendicular. Plane p has equation $x + 2y - 3z = 12$. Plane q conwith equation $\frac{x-1}{2} = \frac{y+1}{-1} = \frac{z-3}{4}$. The point A on l has coordinates $(1, -1, 3)$.
[4]	(i) Find a cartesian equation of q .
[4]	(ii) Find a vector equation of the line m where p and q meet.
AB. Hence, or [5]	(iii) B is a general point on m . Find an expression for the square of the distance A otherwise, find the coordinates of the point on m which is nearest to A .
Point C lies on	Referred to the origin O , points A and B have position vectors \mathbf{a} and \mathbf{b} respectively.
and B , such that	OA, between O and A , such that $OC : CA = 3 : 2$. Point D lies on OB , between O at $OD : DB = 5 : 6$.
[2]	(i) Find the position vectors \overrightarrow{OC} and \overrightarrow{OD} , giving your answers in terms of a and b .
(b) , where λ is a a parameter μ .	(ii) Show that the vector equation of the line BC can be written as $\mathbf{r} = \frac{3}{5}\lambda\mathbf{a} + (1 - \lambda)$ parameter. Find in a similar form the vector equation of the line AD in terms of a
C and <i>AD</i> meet [5]	(iii) Find, in terms of a and b , the position vector of the point E where the lines BC and find the ratio $AE : ED$.
(2015/P1/7)	
	The line L has equation $\mathbf{r} = \mathbf{i} - 2\mathbf{j} - 4\mathbf{k} + \lambda(2\mathbf{i} + 3\mathbf{j} - 6\mathbf{k})$.
[2]	(i) Find the acute angle between L and the x -axis.
	The point P has position vector $2\mathbf{i} + 5\mathbf{j} - 6\mathbf{k}$.
find the point on [5]	(ii) Find the points on L which are a distance of $\sqrt{33}$ from P . Hence or otherwise find L which is closest to P .
[3] (2015/P2/2)	(iii) Find a cartesian equation of the plane that includes the line L and the point P .
onstants.	The vectors \mathbf{u} and \mathbf{v} are given by $\mathbf{u} = 2\mathbf{i} - \mathbf{j} + 2\mathbf{k}$ and $\mathbf{v} = a\mathbf{i} + b\mathbf{k}$, where a and b are co
[2]	(i) Find $(\mathbf{u} + \mathbf{v}) \times (\mathbf{u} - \mathbf{v})$ in terms of a and b .
$+\mathbf{v})\times(\mathbf{u}-\mathbf{v})$ in	(ii) Given that the i- and k-components of the answer to part (i) are equal, express (u terms of a only. Hence find, in an exact form, the possible values of a for which (in a partition of the components).
$(\mathbf{u} + \mathbf{v}) \times (\mathbf{u} - \mathbf{v})$ [4]	is a unit vector.

- The plane p has equation $\mathbf{r} = \begin{pmatrix} 1 \\ -3 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 2 \end{pmatrix} + \mu \begin{pmatrix} 1 \\ 2 \end{pmatrix}$, and the line l has equation r =where a is a constant and λ , μ and t are parameters.
 - (i) In the case where a = 0,
 - (a) show that l is perpendicular to p and find the values of λ , μ and t which give the coordinates of the point at which l and p intersect,
 - (b) find the cartesian equations of the planes such that the perpendicular distance from each plane to p is 12.
 - (ii) Find the value of a such that l and p do not meet in a unique point. [3]

(2016/P1/11)

- 17 (i) Interpret geometrically the vector equation $\mathbf{r} = \mathbf{a} + t\mathbf{b}$, where \mathbf{a} and \mathbf{b} are constant vectors and tis a parameter.
 - (ii) Interpret geometrically the vector equation $\mathbf{r} \cdot \mathbf{n} = d$, where \mathbf{n} is a constant unit vector and d is a constant scalar, stating what d represents.
 - (iii) Given that $\mathbf{b} \cdot \mathbf{n} \neq 0$, solve the equations $\mathbf{r} = \mathbf{a} + t\mathbf{b}$ and $\mathbf{r} \cdot \mathbf{n} = d$ to find \mathbf{r} in terms of \mathbf{a} , \mathbf{b} , \mathbf{n} and d. Interpret the solution geometrically.

(2017/P1/6)

Electrical engineers are installing electricity cables on a building site. Points (x, y, z) are defined relative to a main switching site at (0, 0, 0), where units are metres. Cables are laid in straight lines and the widths of cables can be neglected.

An existing cable C starts at the main switching site and goes in the direction installed which passes through points P(1, 2, -1) and Q(5, 7, a).

(i) Find the value of a for which C and the new cable will meet. [4]

To ensure that the cables do not meet, the engineers use a = -3. The engineers wish to connect each of the points P and Q to a point R on C.

- (ii) The engineers wish to reduce the length of cable required and believe in order to do this that angle PRQ should be 90°. Show that this is not possible.
- (iii) The engineers discover that the ground between P and R is difficult to drill through and now decide to make the length of PR as small as possible. Find the coordinates of R in this case and the exact minimum length. [5]

(2017/P1/10)

- 1 The o
 - **(i)**
 - (ii)
- 2
- 3 Do no

 - (ii)]
 - Do no

The c

- (i) **H**
- (ii) (
- (iii) F