- The diagram shows a circle with centre O. AD is the diameter of circle. 20.
 - If radius *OA* is 5 cm, and $\angle AOB = 130^{\circ}$, calculate the
 - area of *major* sector AOB, (a)
 - (b) arc length *AEB*,
 - (c)
 - angle *OBD*, area of minor segment *BDF*. (d)

Answer (20a)	[1]
(20b)	[1]
(20c)	[1]
(20d)	[2]

8. (a) In the figure, A, B and C are points on the circle with centre at O. BD and CD are tangents to the circle at points B and C respectively. It is given that AB = 15 cm and $\angle ABO = \frac{5\pi}{36}$ rad.

- (i) Find the radius of the circle.
- (ii) Suppose that $\angle OAC = \frac{5\pi}{18}$ rad, find the area enclosed by the tangents *BD* and *CD* and minor arc *BC*. [4]

[3]

(b) The diagram shows a regular pentagon ABCDE. AC and BD intersect at F.

(i) Find the value of $\angle CDF$.[2](ii) Show that $\angle DFA = 108^{\circ}$.[2]

5

In the diagram, OPQ is the cross section of a wooden door stopper. PQ is an arc of a circle, centre O and RQ is an arc of another circle, centre S. OR = 9 cm, OS = 15 cm and OP is a tangent to arc RQ at R.

(a) Show that angle ROS = 0.927 radians, correct to 3 significant figures. [2]

The wooden door stopper is 30 mm thick. The shaded region represents the portion that will be cut off to remove its sharp edge.

(b)	Calculate the perimeter of the shaded region.	[5]
(c)	Calculate the volume of wood, in cm ³ , that needs to be cut off.	[5]

8 (a) In the diagram, A, B and C lie on a circle, centre O. The tangents at A and C meet at T. Angle $COA = 116^{\circ}$.

Find, stating your reasons clearly,

(i)	obtuse angle ABC,	[1]
(ii)	angle CAT,	[1]
(iii)	angle CTA.	[1]

(b) The figure shows a semicircle PQS with centre O with diameter PQ and a semicircle PRT with diameter PR.

- (i) Show that PR = 8.0902 cm, correct to 5 significant figures. [2]
- (ii) Find the perimeter of the shaded region. [3]
- (iii) Find the area of the shaded region.

[3]

7 (a) In the diagram, *OARB* is a sector of a circle with centre *O*, radius 12 cm and angle AOB = 1.2 radians. *C* is the centre of the circle enclosed inside the sector, *OCR* is a straight line and the circle touches the sector at *P*, *Q* and *R*.

(i) Show that the radius of the enclosed circle is 4.3305 cm, correct to 4 decimal places.

[3]

[2]

- (ii) Calculate the perimeter of the shaded region *POQ*.
- (b) In the diagram below, *ABD*, *AFG*, *ACE*, *BFC* and *DGE* are straight lines. *BFC* is parallel to *DGE* and *DBA* is parallel to *GC*.

(iii) Given the area of triangle ABF is 6.4 cm², find the area of trapezium ACGD. [3]

8

The diagram shows a circle with centre O and radius 7 cm. P, Q, R and S are points on the circle. The tangents to the circle at P, Q and R form the triangle ABC. Triangle ABC is isosceles with AB = AC. Angle $QOR = 136^{\circ}$.

(a)	Show that angle $OAR = 22^{\circ}$. Give a reason for each step of your working.	[3]
(b)	Calculate the area of the triangle ABC.	[4]
(c)	Angle $ROS = \theta$ radians. The perimeter of the sector <i>ORS</i> is $2(\theta + 10)$ cm.	
	Calculate the length of the arc RS.	[3]

24 *ABCD* is a square of sides $\sqrt{2}r$ cm. Its vertices lie on the circumference of a circle, with centre *O* and radius *r*. Arc *AEC* has centre *D*.

What fraction of the circle *ABCD* is **not** shaded? Give your answer in terms of π .

END OF PAPER

The diagram shows a semi-circle *ACB* and a sector *PBR* of a circle with centre *P*. It is given that *AB* is perpendicular to *BP* and AB=RP=20 cm.

(i)	Find, in radians, the angle <i>BPA</i> .	[1]

(ii) For the shaded region ACBRA, find, correct to one decimal place,

(a)) the area,	

(b) the perimeter. [2]

11 The figure shows a pedestrian walkway joining a multi-storey car park and a Departmental Store.

To estimate its length the walkway is modelled by the arc ABC as shown in the figure below, where A is the entrance to the department store and C is the exit to the car park. The arc ABC is part of a sector with centre O.

Given AC = 49.65 m and angle $ABC = 120.7^{\circ}$,

(a) show that $AO = 29$ m.	[3]
----------------------------	-----

(b) show that the length of arc ABC is 60 m. [1]

Page 17 of 17

21 The figure shows a sector *OAB* with centre *O*, and an arc *BD* of another circle with centre *C*. It is given that OC = 15 cm, OD = 12 cm and CD = 9 cm.

- (**b**) Find
 - (i) $\angle AOB$, in radian,
 - (ii) the perimeter of the shaded region,
 - (iii) the area of the shaded region.

- *Answer* : (**b**)(**i**) radian [1]
 - (ii) cm [2]
 - (iii) $cm^2 [2]$

~ END OF PAPER ~