- 1. Find the equations of the tangents to the curve $x^2 + y^2 = \frac{1+y}{x}$ that are parallel to the *y*-axis.
- 2. A curve is defined by the parametric equations

$$x = \frac{t}{1+2t}, \ y = \frac{t}{1-2t}, \ \text{where } t \in \mathbb{R}, t \neq \pm \frac{1}{2}.$$

Show that the tangent to the curve at any point with parameter t has equation $(1-2t)^2y = (1+2t)^2x - 4t^2$.

- 3. By using the substitution $x = \frac{\cos \theta}{a}$, show that $\int_0^a \sqrt{1 a^2 x^2} \, \mathrm{d}x = \frac{\pi}{4a}$.
- 4. The roots of the equation $z^2 + 5 + 12i = 0$ are z_1 and z_2 . Find z_1 and z_2 in cartesian form x + yi, showing your working.
- 5. The complex numbers u and v are given by $\sqrt{3} + i$ and -k + ki respectively, where k is a positive real number. Find $\frac{v^7}{(u^*)^3}$ in the form $re^{i\theta}$, where r is a positive constant in terms of k and $-\pi < \theta \le \pi$.

6. [AJC 18 MYE (modified)]

(a) Show that $[(k+2)!]k - (k!)(k-2) = (k!)(k^3 + 3k^2 + k + 2).$ [1]

(b) Hence find
$$\sum_{k=3}^{n} \left[(k!)(k^3 + 3k^2 + k + 2) \right]$$
 in terms of *n*. [3]

(c) Hence find
$$\sum_{k=n+1}^{2n} \left[(k!)(k^3 + 3k^2 + k + 2) \right]$$
 in terms of *n*. [2]

- 7. [EJC 18 MYE (modified)] The amount of salt dissolved in a tank, S (in grams), at time t minutes is described by the differential equation $\frac{dS}{dt} = 10 \frac{S}{t+10}$.
 - (a) Use the substitution Q = (t + 10)S to simplify the differential equation into the form $\frac{\mathrm{d}Q}{\mathrm{d}t} = a(t + 10)$, where a is a constant to be determined. [2]
 - (b) Hence find S in terms of t, given that there was initially 300 grams of salt dissolved.

[6]

[4]

[3]

[4]

 $\left[5\right]$

[2]