1. Find the equations of the tangents to the curve $x^{2}+y^{2}=\frac{1+y}{x}$ that are parallel to the y-axis.
2. A curve is defined by the parametric equations

$$
x=\frac{t}{1+2 t}, y=\frac{t}{1-2 t}, \text { where } t \in \mathbb{R}, t \neq \pm \frac{1}{2}
$$

Show that the tangent to the curve at any point with parameter t has equation $(1-2 t)^{2} y=(1+2 t)^{2} x-4 t^{2}$.
3. By using the substitution $x=\frac{\cos \theta}{a}$, show that $\int_{0}^{a} \sqrt{1-a^{2} x^{2}} \mathrm{~d} x=\frac{\pi}{4 a}$.
4. The roots of the equation $z^{2}+5+12 i=0$ are z_{1} and z_{2}. Find z_{1} and z_{2} in cartesian form $x+y i$, showing your working.
5. The complex numbers u and v are given by $\sqrt{3}+i$ and $-k+k i$ respectively, where k is a positive real number. Find $\frac{v^{7}}{\left(u^{*}\right)^{3}}$ in the form $r e^{i \theta}$, where r is a positive constant in terms of k and $-\pi<\theta \leq \pi$.
6. [AJC 18 MYE (modified)]
(a) Show that $[(k+2)!] k-(k!)(k-2)=(k!)\left(k^{3}+3 k^{2}+k+2\right)$.
(b) Hence find $\sum_{k=3}^{n}\left[(k!)\left(k^{3}+3 k^{2}+k+2\right)\right]$ in terms of n.
(c) Hence find $\sum_{k=n+1}^{2 n}\left[(k!)\left(k^{3}+3 k^{2}+k+2\right)\right]$ in terms of n.
7. [EJC 18 MYE (modified)] The amount of salt dissolved in a tank, S (in grams), at time t minutes is described by the differential equation $\frac{\mathrm{d} S}{\mathrm{~d} t}=10-\frac{S}{t+10}$.
(a) Use the substitution $Q=(t+10) S$ to simplify the differential equation into the form $\frac{\mathrm{d} Q}{\mathrm{~d} t}=a(t+10)$, where a is a constant to be determined.
(b) Hence find S in terms of t, given that there was initially 300 grams of salt dissolved.

