Answer all the questions.
1 (a) Simplify $\frac{24 c^{3} d^{2}}{\left(3 d e^{2}\right)^{3}} \div \frac{5 c^{-2}}{10 d f}$.
(b) Express as a single fraction $\frac{7}{(6-5 p)^{2}}-\frac{2 p-1}{10 p-12}$.
(c) Simplify $\frac{6 x^{2}-17 x+5}{18 x^{2}-2} \times \frac{15 x+5}{10-4 x}$.
(d) It is given that $1-\frac{a-b}{b+2 c}=\frac{2 a-1}{2}$.

Express b in terms of a and c.

2 The diagram shows a solid prism $A B C D E F G H$ with a horizontal rectangular base $E F G H$ and a horizontal rectangular top $A B C D$.
B is vertically above F and A is vertically above E.
$B C=20 \mathrm{~cm}, F G=36 \mathrm{~cm}, B F=12 \mathrm{~cm}$ and $G H=40 \mathrm{~cm}$.

(a) Find the length of $B H$.
(b) Find the total surface area of the prism.
(c) The prism is melted and recast into a right pyramid with a square base.

The height of the pyramid is 24 cm .
Find the length of each side of the square base.

22(a) A solid is made from a cone and a hemisphere. The cone has radius $r \mathrm{~cm}$ and slant height $l \mathrm{~cm}$. The hemisphere has radius r. Write down the total surface area of the solid in terms of r and l.

Answer

\qquad cm^{2} [1]
(b) The height and base an equilateral triangle are $\frac{\sqrt{3}}{2} r \mathrm{~cm}$ and $r \mathrm{~cm}$ respectively.
(i) Find the area of the equilateral triangle.

Answer \qquad cm^{2} [1]
(ii) 4 of the equilateral triangles in (i) are used to make a tetrahedron (a right triangular pyramid) shown in the diagram. Find the total surface area of the tetrahedron.

Answer \qquad cm^{2} [1]
(c) The total surface area of the solid in (a) is equal to the total surface area of the tetrahedron in (b). Find l in terms of r.

$$
\begin{equation*}
\text { Answer } \quad l= \tag{2}
\end{equation*}
$$

8 A hollow glass container, shown in Diagram 1, is formed by joining a hemispherical base to a cone.
The hemisphere has a radius of 6 cm and the height of the cone is $h \mathrm{~cm}$. The volume of the cone is $980 \mathrm{~cm}^{3}$.

Diagram 1

Diagram 2
(i) Show that $h=26.0 \mathrm{~cm}$.
(ii) Find the surface area, in square metres, of the exterior of container.
(b) The container was half filled with water and then inverted as shown in diagram 2. Find the height of water level in Diagram 2.

