1. [CJC 19 MYE]

The functions f and g are defined by

$$f: x \mapsto x^2 + 2,$$
 $x \in \mathbb{R},$
 $q: x \mapsto -2x + 5,$ $x \in \mathbb{R}.$

State a sequence of transformations which transform the graph of y = f(x) to the graph of y = fg(x).

[3]

2. [JPJC 19 MYE]

The curve y = g(x) undergoes the transformations A, B and C in succession:

- A: a translation of 1 unit in the positive x-direction,
- B: a scaling parallel to the x-axis with scale factor $\frac{1}{2}$, and
- C: a translation of 3 units in the positive y-direction.

Find an expression for g(x) if the equation of the resulting curve is $y = 3 - \frac{1}{2x - 1}$. [3]

3. [CJC 18 Prelims]

- (a) Let $y = \ln(e^x + 1)$. Show that $\frac{d^2y}{dx^2} - \frac{dy}{dx} + \left(\frac{dy}{dx}\right)^2 = 0$. [2]
- (b) By further differentiation of the result in part (a), find the first four non-zero terms in the Maclaurin series for y.
- (c) Hence, expand $\frac{\ln(e^x+1)}{4-x^2}$ in ascending powers of x up to and including the term in x^3 . Leave the coefficients of the series in exact form.

4. [ACJC 18 Prelims]

In the triangle ABC, AB=2, BC=3 and angle $ABC=\frac{\pi}{3}-\theta$ radians. Given that θ is a sufficiently small angle, show that

$$AC \approx \left(7 - 6\sqrt{3}\theta + 3\theta^2\right)^{\frac{1}{2}} \approx a + b\theta + c\theta^2,$$

where a, b and c are to be determined in exact form.

[7]

[3]

|5|

[3]

5. [MI 18 Prelims]

- (a) Given that $\ln y = \sin 2x$, show that $\frac{dy}{dx} = 2y \cos 2x$. Hence find the values of $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ when x = 0.
- (b) Write down the first three non-zero terms in the Maclaurin series for y. [1]
- (c) It is given that the second and third non-zero terms in part (b) are equal to the first and second non-zero terms in the series expansion of $e^{px} \ln(1 + qx)$ respectively. Using appropriate expansions from the List of Formulae (MF26), find the values of the constant p.
- (d) Hence state the range of values of x for which the series expansion of $e^{px} \ln(1+qx)$ is valid.

[3]

Answers

- 1. 1. Translate by 5 units in the negative x-direction.
 - 2. Reflect about the y-axis.
 - 3. Scale by a factor of $\frac{1}{2}$ parallel to the x-axis. (Other answers are possible too: check with me)
- 2. $g(x) = -\frac{1}{x}$.
- 3. (b) $y = \ln 2 + \frac{1}{2}x + \frac{1}{8}x^2 \frac{1}{192}x^4 + \dots$
 - (c) $y = \frac{1}{4} \ln 2 + \frac{1}{8}x + (\frac{1}{32} + \frac{1}{16} \ln 2)x^2 + \frac{1}{32}x^3 + \dots$
- 4. $a = \sqrt{7}, b = -\frac{3\sqrt{21}}{7}, c = -\frac{3\sqrt{7}}{49}$.
- 5. (a) $\frac{dy}{dx} = 2, \frac{d^2y}{dx^2} = 4.$
 - (b) $y = 1 + 2x + 2x^2 + \dots$
 - (c) p = 2, q = 2.
 - (d) $-\frac{1}{2} < x \le \frac{1}{2}$.