1. [CJC 19 MYE]

The functions f and g are defined by

$$
\begin{array}{ll}
f: x \mapsto x^{2}+2, & x \in \mathbb{R}, \\
g: x \mapsto-2 x+5, & x \in \mathbb{R} .
\end{array}
$$

State a sequence of transformations which transform the graph of $y=f(x)$ to the graph of $y=f g(x)$.
2. [JPJC 19 MYE]

The curve $y=g(x)$ undergoes the transformations A, B and C in succession:

- A: a translation of 1 unit in the positive x-direction,
- B : a scaling parallel to the x-axis with scale factor $\frac{1}{2}$, and
- C : a translation of 3 units in the positive y-direction.

Find an expression for $g(x)$ if the equation of the resulting curve is $y=3-\frac{1}{2 x-1}$.
3. [CJC 18 Prelims]
(a) Let $y=\ln \left(e^{x}+1\right)$.

Show that $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}-\frac{\mathrm{d} y}{\mathrm{~d} x}+\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)^{2}=0$.
(b) By further differentiation of the result in part (a), find the first four non-zero terms in the Maclaurin series for y.
(c) Hence, expand $\frac{\ln \left(e^{x}+1\right)}{4-x^{2}}$ in ascending powers of x up to and including the term in x^{3}. Leave the coefficients of the series in exact form.

4. [ACJC 18 Prelims]

In the triangle $A B C, A B=2, B C=3$ and angle $A B C=\frac{\pi}{3}-\theta$ radians. Given that θ is a sufficiently small angle, show that

$$
A C \approx\left(7-6 \sqrt{3} \theta+3 \theta^{2}\right)^{\frac{1}{2}} \approx a+b \theta+c \theta^{2}
$$

where a, b and c are to be determined in exact form.

5. [MI 18 Prelims]

(a) Given that $\ln y=\sin 2 x$, show that $\frac{\mathrm{d} y}{\mathrm{~d} x}=2 y \cos 2 x$. Hence find the values of $\frac{\mathrm{d} y}{\mathrm{~d} x}$ and $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$ when $x=0$.
(b) Write down the first three non-zero terms in the Maclaurin series for y.
(c) It is given that the second and third non-zero terms in part (b) are equal to the first and second non-zero terms in the series expansion of $e^{p x} \ln (1+q x)$ respectively. Using appropriate expansions from the List of Formulae (MF26), find the values of the constant p.
(d) Hence state the range of values of x for which the series expansion of $e^{p x} \ln (1+q x)$ is valid.

Answers

1. 2. Translate by 5 units in the negative x-direction.
1. Reflect about the y-axis.
2. Scale by a factor of $\frac{1}{2}$ parallel to the x-axis.
(Other answers are possible too: check with me)
3. $g(x)=-\frac{1}{x}$.
4. (b) $y=\ln 2+\frac{1}{2} x+\frac{1}{8} x^{2}-\frac{1}{192} x^{4}+\ldots$
(c) $y=\frac{1}{4} \ln 2+\frac{1}{8} x+\left(\frac{1}{32}+\frac{1}{16} \ln 2\right) x^{2}+\frac{1}{32} x^{3}+\ldots$
5. $a=\sqrt{7}, b=-\frac{3 \sqrt{21}}{7}, c=-\frac{3 \sqrt{7}}{49}$.
6. (a) $\frac{\mathrm{d} y}{\mathrm{~d} x}=2, \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}=4$.
(b) $y=1+2 x+2 x^{2}+\ldots$
(c) $p=2, q=2$.
(d) $-\frac{1}{2}<x \leq \frac{1}{2}$.
