Mathematical Formulae

Compound Interest

$$
\text { Total amount }=P\left(1+\frac{r}{100}\right)^{n}
$$

Mensuration

Curved surface area of a cone $=\pi r l$

$$
\text { Surface area of a sphere }=4 \pi r^{2}
$$

$$
\text { Volume of a cone }=\frac{1}{3} \pi r^{2} h
$$

Volume of a sphere $=\frac{4}{3} \pi r^{3}$

$$
\text { Area of triangle } A B C=\frac{1}{2} a b \sin C
$$

Arc length $=r \theta$, where θ is in radians

Sector area $=\frac{1}{2} r^{2} \theta$, where θ is in radians

Trigonometry

$$
\begin{gathered}
\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C} \\
a^{2}=b^{2}+c^{2}-2 b c \cos A
\end{gathered}
$$

Statistics

$$
\begin{aligned}
\text { Mean } & =\frac{\sum f x}{\sum f} \\
\text { Standard deviation } & =\sqrt{\frac{\sum f x^{2}}{\sum f}-\left(\frac{\sum f x}{\sum f}\right)^{2}}
\end{aligned}
$$

6. (a) The diagram below shows a container which is made by attaching an open hemisphere of internal radius 23 cm to the rim of a hollow cylinder with the same internal radius and a height of $h \mathrm{~cm}$.

The container is suspended from O by four wires, each of length 36 cm , fastened symmetrically to the rim of the cylinder.

It is given that 43.7 litres of water is needed to completely fill the container.
(i) Show that $h=10.96 \mathrm{~cm}$, corrected to 4 significant figures.
(ii) Hence, find the vertical distance $O B$.
(b) The figure below shows a solid triangular prism where the cross section $A B C$ and $D E F$ are equilateral triangles. It has a cylindrical hole in the centre and a square base BCFE of area $36 \mathrm{~m}^{2}$. The volume of the cylindrical hole is $75.36 \mathrm{~m}^{3}$.

1 can of paint covers $9 \mathrm{~m}^{2}$ of the area. Find the number of cans of paint to purchase in order to paint the entire solid.
10. A ship leaves a port at P and sails 21 km towards a lighthouse, L. It then sails 28 km towards an island, I. It is given that the bearing of L from I is 116° and the bearing of P from I is 163°.

(a) Find the bearing of I from L.
(b) Calculate the distance IP.
(c) The ship then returns to the port P, travelling along the route $I P$. Calculate the distance from P when the ship is closest to the lighthouse, L.
(d) Given that the height of the lighthouse is 500 m , calculate the angle of depression of P from the top of the lighthouse.
$6 A, B, C$ and D are four coastal guard posts on the Indian Ocean. C is 800 m due east of B and $A C=B C$. D is on line $A C$ such that $C D=300 \mathrm{~m}$ and $B D=600 \mathrm{~m}$.

(a) Calculate
(i) angle $B C D$,
(ii) the bearing of A from B.
(b) Find $A B$.
(c) A ship sailing along $A C$ stops at a point X, which is nearest to B.
(i) Find $B X$.
(ii) The ship at point X sends a distress signal by shooting a red flame vertically up into the sky. It was spotted from point B when the red flame reached a height of 250 m .

Find the angle of elevation of the red flame from B.

16 A solid cylinder has radius $r \mathrm{~cm}$ and height $h \mathrm{~cm}$.
A solid sphere has radius $r \mathrm{~cm}$.
The total surface areas of the solid cylinder and the sphere are equal.

Work out, in terms of r, the total volume of the cylinder.

