CJC 2019 H2 Mathematics

Prelim Paper 1

1 Differentiate $\mathrm{e}^{-x^{2}}$ with respect to x. Hence find $\int x^{3} \mathrm{e}^{-x^{2}} \mathrm{~d} x$.

2 Without using a calculator, solve the inequality $x^{2}+4 x+3<\frac{x+3}{2 x+1}$.

3 The curve C has the equation $\frac{(x-5)^{2}}{16}+\frac{(y-3)^{2}}{9}=1$.
(i) Sketch C, showing clearly the coordinates of the stationary points and the vertices.

The region R is bounded by curve C, the line $x=9$ and the x axis.
(ii) Find the volume of the solid generated when region R is rotated completely about the x axis.
(iii) Describe fully a sequence of two transformations which would transform the curve C to the curve $\frac{(2 x-5)^{2}}{16}+\frac{y^{2}}{9}=1$.

4 (i) Show that $\frac{3 r(r+1)+1}{r^{3}(r+1)^{3}}=\frac{A}{r^{3}}+\frac{B}{(r+1)^{3}}$, where A and B are to be determined.
(ii) Hence find $\frac{7}{(1)^{3}(2)^{3}}+\frac{19}{(2)^{3}(3)^{3}}+\ldots+\frac{6 n(2 n+1)+1}{(2 n)^{3}(2 n+1)^{3}}$.
(iii) Use your answer in part (ii) to find $\sum_{r=1}^{\infty}\left[\frac{3 r(r+1)+1}{r^{3}(r+1)^{3}}+\left(\frac{1}{2}\right)^{r}\right]$.

A developer has won the tender to build a stadium. Sunrise Singapore, who would finance the construction, wants to have a capacity of at least 50000 seats. There is a limited land area to the stadium, and in order for the stadium to have a full sized track and football pitch, the first row of seats can seat 300 people, and every subsequent row has an additional capacity of 20 seats.
(i) What is the least number of rows the stadium must have to meet Sunrise Singapore's requirement?

Assume now that the stadium has been built with 60 rows, with row 1 nearest to the football pitch.
(ii) For the upcoming international football match between Riverloop FC and Gunners FC, tickets are priced starting with $\$ 60$ for Category 1, with each subsequent category cheaper by 10%. How much would a seat in the $45^{\text {th }}$ row cost?

Category 1	Rows 1-20
Category 2	Rows 21-40
Category 3	Rows 41-60

There is a total crowd of 51000 for the football match.
(iii) Assuming that all the tickets from the cheapest category are sold out first before people purchase tickets from the next category, calculate the total revenue collected for the football match.

6 (i) Given that $y=\sqrt{e^{x} \cos x}$, show that $\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)^{2}+y \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}=2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}-y^{2}$.
(ii) Find the Maclaurin series for $y=\sqrt{e^{x} \cos x}$, up to and including the term in x^{3}.
(iii) Verify the correctness of the expansion found in part (ii) using standard series found in the List of Formulae (MF26).

7 (i) A water trough, shown in the diagram below, in the shape of a triangular prism is used to collect rainwater. The trough consists of two rectangular zinc sheets of negligible thickness, each with fixed dimensions 10 m by 2 m , and two triangular zinc sheets with height $h \mathrm{~m}$, as shown in the diagram below. Use differentiation to find the maximum volume of the trough, proving that it is a maximum.

(ii) Water collected in the trough is drained at a rate of $0.001 \mathrm{~m} 3 / \mathrm{s}$ into a container consisting of two cylinders, as shown below. The larger cylinder has radius 1 m and height 0.5 m . The smaller cylinder has radius 0.6 m and height 0.5 m . Find the rate at which the depth of water is increasing after 29 minutes.

(iii) Let H be the height of the water level in the container at time t.

Sketch the graph of $\frac{\mathrm{d} H}{\mathrm{~d} t}$ against t.

8 Do not use a calculator in answering this question.

(a) Showing your working clearly, find the complex number z and w which satisfy the simultaneous equations

$$
\begin{align*}
& 3 z-\mathrm{i} w=12+9 \mathrm{i}, \tag{5}\\
& 2 z^{*}+3 w=16-23 \mathrm{i} .
\end{align*}
$$

(b) It is given that z_{1} is a root of the equation $z^{4}+3 z^{3}+4 z^{2}-8=0$, where $z_{1}=-1+\sqrt{3} \mathrm{i}$.
(i) Express $z^{4}+3 z^{3}+4 z^{2}-8=0$ as a product of two quadratic factors with real coefficients.
(ii) Given that $\mathrm{e}^{p+i q}=z_{1}^{5}$, determine the exact values of p and q, where $-\pi<q<\pi$.

9 Line l_{1} has equation $r=\left(\begin{array}{c}-1 \\ 8 \\ 3\end{array}\right)+\lambda\left(\begin{array}{l}2 \\ 1 \\ 5\end{array}\right)$ where λ is a real parameter, and plane p has equation $\mathbf{r} \cdot\left(\begin{array}{l}a \\ b \\ 0\end{array}\right)=17$. It is given that l_{1} lies completely on p and the point Q has coordinates $(-1,-2,3)$.
(i) Show that $a=-1$ and $b=2$.
(ii) Find the foot of perpendicular from point Q to point P. Hence find the shortest distance between point Q and p in exact form.

Given that the shortest distance between l_{1} and the foot of perpendicular of Q on p is $\frac{5}{3} \sqrt{6}$
(iii) Using the result obtained in part (ii) or otherwise, find the shortest distance between Q and l_{1}.

The line l_{2} is parallel to p, perpendicular to l_{1} and passes through P and Q.
(iv) Show that the Cartesian equation of the line l_{2} is $\frac{x+1}{2}=y+2=3-z$.
(v) Find the vector equation of line l_{3}, which is the reflection of l_{2} about p.

Tumours develop when cells in the body divide and grow at an excessive rate. If the balance of cell growth and death is disturbed, a tumour may form. A medical scientist investigates the change of the tumour size, $L \mathrm{~mm}$ at time t days of a particular patient using models A and B. For both of the models, it is given that the initial rate of the tumour size is 1 mm per day when the tumour size is 1 mm .
(i) Under Model A, the scientist observes that the patient's turmour is growing at a rate proportional to the square root of its size. At the same time, the tumour is reduced by radiation at a rate proportional to its size. It is further observed that the patient's tumour is decreasing at 2 mm per day when the tumour is 4 mm .

Show that L and t are related by the differential equation

$$
\begin{equation*}
\frac{\mathrm{d} L}{\mathrm{~d} t}=3 \sqrt{L}-2 L \tag{2}
\end{equation*}
$$

(ii) Using the substitution $L=y^{2}$ where $y>0$, show that the differential equation in part (i) can be written as

$$
\begin{equation*}
\frac{\mathrm{d} y}{\mathrm{~d} t}=\frac{3-2 y}{2} . \tag{7}
\end{equation*}
$$

Find y in terms of t and hence find L in terms of t only.
(iii) Under Model B, the scientist suggests that L and t are related by the differential equation

$$
\begin{equation*}
\frac{\mathrm{d}^{2} L}{\mathrm{~d} t^{2}}=\frac{-2 t}{\left(1+t^{2}\right)^{2}} \tag{4}
\end{equation*}
$$

Find the particular solution of this differential equation.
(iv) Find tumour sizes predicted by Models A and B in the long run.

CJC 2019 H2 Mathematics

Prelim P2

Section A: Pure Mathematics (40 Marks)

1 The function h is given by $h(x)=a x^{3}+b x^{2}+\frac{x}{c}, \quad x \in \mathbb{R}$, where a, b and c are real constants.

The graph of $y=\mathrm{h}(x)$ passes through the point $\left(1, \frac{13}{4}\right)$. The point $(-8,642)$ lies on the graph of $y=\mathrm{h}(|x|)$ and the point $\left(4, \frac{1}{97}\right)$ lies on the graph of $y=\frac{1}{\mathrm{~h}(x)}$. Find the values of a, b and c.

2 Given that $k \mathbf{p}=(\mathbf{p} . \mathbf{q}) \mathbf{q}$ where k is a positive constant, \mathbf{p} and \mathbf{q} are non - zero vectors.
(i) What is the geometrical relationship between \mathbf{p} and \mathbf{q} ?
(ii) Find $|\mathbf{q}|$ in terms of k.

3 The diagram below shows the graph of $y=\mathrm{f}(x)$. The curve has a minimum point $(5,10)$ and a maximum point $(-1,-2)$. The lines $x=2$ and $y=x+2$ are asymptotes of the graph.

(i) Sketch the curve $y=\mathrm{f}^{\prime}(x)$, indicating clearly the coordinates of the points where the graph crosses the x axis and the equations of any asymptotes.
(ii) State the range of values of x for which the graph of $y=\mathrm{f}(x)$ is
(a) strictly decreasing,
(b) concave upwards.

4 The function f is defined by $\mathrm{f}: x \rightarrow x|x-3|, \quad x \in \mathbb{R}, 2 \leq x<3$.
(i) Explain, with the aid of a sketch, why the inverse function f^{-1} exists.
(ii) Find $\mathrm{f}^{-1}(x)$ and state the domain of f^{-1}.

It is given that $\mathrm{g}(x)=\left\{\begin{array}{cl}2 x-2, & 0 \leq x \leq 2 \\ \frac{10-2 x}{x+1}, & 2<x<4 .\end{array}\right.$
(iii) Sketch the graph of $y=g(x)$.
(iv) Find $\operatorname{gf}(x)$.
(v) Find the range of gf.

5 A curve C has parametric equations $x=1-\sin \theta, \quad y=\theta+\cos \theta$, where $-\pi \leq \theta \leq \frac{\pi}{2}$.
(i) Sketch the graph of C, stating the exact coordinates of the end points.
(ii) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of θ. What can be said about the tangent to C as $\theta \rightarrow-\frac{\pi}{2}$?
(iii) A point P on C has parameter p, where $0<p<\frac{\pi}{2}$. Show that the normal to C at P crosses the y axis at point Q with coordinates $(0, p)$.
(iv) Show that the area of region bounded by C, the normal to C at point P and the y axis is given by $a \pi+b p+c \cos p$, where a, b and c are to be determined.
(v) The normal to C at P also crosses the x axis at point R. Find a Cartesian equation of the locus of the midpoint of $Q R$ as p varies.

Section B: Probability and Statistics (60 marks)

6 To raise its profile, ABC Supermart devised a publicity where, if a customer has purchases of $\$ R$ or more in a single receipt, he is qualified to participate in a sure-win "Lucky Spin" game. In the game, the customer spins the first wheel (which is divided into 3 equal parts) to see how much money he wins, then he spins a second wheel to see how much his winning is multiplied by.

First whecl

Second wheel

For example, based on the illustration above, if the result from the first spin is " $\$ 10$ ", and the result of the second spin is " $\times 4$ ", then the person playing the game would have received $\$ 40$.

Let X denote the amount won from playing the game.
(i) Tabulate the probability distribution of X.
(ii) ABC Supermart makes a profit of 40% on all purchases made by customers. It wishes to use the profits generated from every qualifying receipt to offset the amounts given away in the game. Determine the value of $\$ R$ that the Supermart needs to set for a customer to qualify to play the game. Give your answer correct to the nearest dollar.
(iii) Find the value of σ, the standard deviation of X. Hence find $P(X<\sigma)$.

7 An experiment is being carried out to study the correlation between the solubility of sugar in water and the temperature of the water. The amount of sucrose x (in grams) dissolved in 100 ml of water for different water temperatures T (in degree Celsius) is recorded. The results shown in the table. Unfortunately, one of the values of x was accidentally deleted from the records later on and it is indicated by k as shown below.

T	0	20	40	60	80	100
X	179	204	241	k	363	487

It is given that the equation of the regression line of x on T is $x=2.94857 T+146.238$. Show that $k=288$.
(i) Draw a scatter diagram to illustrate the data, labelling the axes clearly.

The value of the product moment correlation coefficient between x and T is 0.959 . It is thought that a model given by the formulae $\ln x=a+b T$ may also be a suitable fit to the data where a and b are constants.
(ii) Calculate the least square estimates of a and b and find the value of the product moment correlation coefficient between T and $\ln x$.
(iii) Use your answers to parts (i) and (ii) to explain which of $x=2.94857 T+146.238$ or $\ln x=a+b T$ is the better model.
(iv) Hence, predict the value of T for which $x=300$. Comment on the reliability of your prediction.

8 Cynthia is a skilled pistol shooter who hits the bullseye of the target 70% of the time. During her training sessions, she shoots a series of 15 shots on a target before changing to a new target.

A series is considered "good" if she is able to hit the bullseye at least 11 times on the target.
(i) Find the probability that Cynthia is able to obtain a good series.

Cynthia is able to end the training session early if she is able to obtain at least 6 good series in n attempts.
(ii) Find the least value of n such that she can be at least 99% certain of being able to end the training session early.

Suppose Cynthia has completed 40 of the fifteen-shot series,
(iii) estimate the probability that she has, on average, hit the bullseye more than 10 times per series.

9 The security guard of a particular school claims that the average speed of the cars in the school compound is greater than the speed limit of $25 \mathrm{~km} / \mathrm{h}$. To investigate the security guard's claim, the traffic police randomly selected 50 cars and the speed was recorded. The total speed and the standard deviation of the 50 cars are found to be $1325 \mathrm{~km} / \mathrm{h}$ and $7.75 \mathrm{~km} / \mathrm{h}$ respectively.
(i) Find the unbiased estimates of the population mean and variance.
(ii) Test at 5% level of significance whether there is sufficient evidence to support the security guard's claim.

It is now known that the speed of the cars is normally distributed with mean $25 \mathrm{~km} / \mathrm{h}$ and standard deviation of $6 \mathrm{~km} / \mathrm{h}$.
(iii) A new sample of n cars is obtained and the sample mean is found to be unchanged. Using this sample, the traffic police conducts another test at 10% level of significance and concludes that the security guard's claim is valid. Find the set of values n can take.
(iv) What is the speed exceeded by 75% of the cars?

10 The Mathematics examination score of a randomly chosen student in Group A is X, where X follows a normal distribution with mean 55 and standard deviation σ. The Mathematics examination score of a randomly chosen student in Group B is Y, where Y follows a normal distribution with mean 45 and standard deviation 10 .
(i) It is known that $2 P(X>45)=5 P(X>65)$. Show that $\sigma=17.7$, correct to 3 significance figures.
(ii) Find the probability that total score of 3 randomly selected students from Group A differ from 4 times the score of a randomly selected student from Group B by at most 10 .
(iii) Find the probability that the mean score of 3 randomly selected students from Group A and 4 randomly selected students from Group B is at least 50.

The Mathematics examination scores of students in Group C are found to have a mean of 40 and standard deviation of 25 . Explain why the examination scores of students in Group C are unlikely to be normally distributed.

11 A palindrome is a string of letters or digits that is the same when you read it forwards or backwards. For example: HHCCHH, RACECAR, STATS are palindromes.

A computer is instructed to use any of the letters $\mathbf{R}, \mathbf{O}, \mathbf{F}, \mathbf{L}$ to randomly generate a string of 5 letters. Repetition of any letter is allowed, but the string cannot contain only one letter. For example, RRRRR is not allowed.

Events A and B are defined as follows:
A: the string generated contains 2 distinct letters
B: the string generated is a palindrome
(i) Find $P(A)$ and $P(B)$.
(ii) Find $P(A \cap B)$ and hence determine if A and B are independent.
(iii) Find the probability that the string generated either contains 2 distinct letters, or that it is a palindrome, or both.
(iv) Find the probability that the string generated contains 2 distinct letters, given that it is a palindrome.

CATHOLIC JUNIOR COLLEGE
H2 MATHEMATICS
2019 JC2 PRELIMINARY EXAMINATION SOLUTION

Q1. Techniques of Integration

Assessment Objectives

Solution

Integration by parts

$$
\frac{\mathrm{d}}{\mathrm{~d} x} \mathrm{e}^{-x^{2}}=-2 x \mathrm{e}^{-x^{2}}
$$

Differentiation was we
done except for a few students who clearly do not know how to

$$
\int x^{3} \mathrm{e}^{-x^{2}} \mathrm{~d} x
$$ differentiate exponential

$$
=\int-\frac{1}{2} x^{2} \cdot\left(-2 x \mathrm{e}^{-x^{2}}\right) \mathrm{d} x
$$

$$
\begin{array}{cl}
u=-\frac{1}{2} x^{2} & \frac{\mathrm{~d} v}{\mathrm{~d} x}=-2 x \mathrm{e}^{-x^{2}} \\
\frac{\mathrm{~d} u}{\mathrm{~d} x}=-x & v=\mathrm{e}^{-x^{2}}
\end{array}
$$ form.

Many did not observe

$$
=-\frac{1}{2} x^{2} \mathrm{e}^{-x^{2}}-\int-x \mathrm{e}^{-x^{2}} \mathrm{~d} x
$$ the word 'HENCE' in the question. They went

$$
=-\frac{1}{2} x^{2} \mathrm{e}^{-x^{2}}-\frac{1}{2} \int-2 x \mathrm{e}^{-x^{2}} \mathrm{~d} x
$$ on to do by parts, splitting $\mathrm{e}^{-x^{2}}$ and x^{3} and $=-\frac{1}{2} x^{2} \mathrm{e}^{-x^{2}}-\frac{1}{2} \mathrm{e}^{-x^{2}}+C$

Q2. Inequalities		
Assessment Objectives	Solution	Examiner's Feedback
Use of algebraic method to solve inequality.	$\begin{aligned} & x^{2}+4 x+3-\frac{x+3}{2 x+1}<0 \\ & (x+3)(x+1)-\frac{x+3}{2 x+1}<0 \\ & (x+3) \frac{(x+1)(2 x+1)-1}{2 x+1}<0 \\ & \frac{(x+3)\left[2 x^{2}+3 x+1-1\right]}{2 x+1}<0 \\ & \frac{(x+3)(x)(2 x+3)}{2 x+1}<0 \\ & +\quad-\quad+\quad-\quad+\quad+ \\ & -3 / 2 \quad-\quad 0 \\ & \therefore-3<x<-\frac{3}{2} \text { or }-\frac{1}{2}<x<0 \end{aligned}$	Despite reminders, many students still went to cross-multiply for inequality. Since this questions says "without the use of a calculator", it is expected that students factorize completely and obtain the roots. Incomplete factorization will result in loss of marks. A number of students wrote $-3 \leq x \leq-\frac{3}{2} \quad$ or $\quad-\frac{1}{2}<x \leq 0$ as the final answer. This should not be as the question is a strict inequality to begin with. Many students also wrote 'and' instead of 'or'.
Use of replacement	$\begin{aligned} & -3 \leq x^{2} \leq-\frac{3}{2} \text { or }-\frac{1}{2}<x^{2} \leq 0 \\ & \therefore x=0 \end{aligned}$	Many students could identify the correct replacement but could not go on to obtain the final answer mark for $x=0$ as the answer in the earlier part was wrong.

Page $\mathbf{3}$ of $\mathbf{2 9}$

Translation and Scaling	(iii)	Scaling parallel to x axis with scale factor of $1 / 2$ followed by translation of 3 units in the negative y axis. OR Translation of 3 units in the negative y axis followed by a scaling parallel to x axis with scale factor of $1 / 2$.	This part was very badly attempted. Many students used their own colloquial terms such as "Stretch", "Multiple", "Shift", "Move" which were not accepted. Some used the generic term "Transform" in place of "scale" and "translate" when they were required to describe the transformation. Many students also failed to include the key word "scale factor" in their description of the scaling step. Other common mistakes includes the confusion of $1 / 2$ vs 2 for scale factor and $+v s-3$ for the magnitude of the translation. Quite a number of students also omitted the axis in which the transformation was applied or stated the wrong axis.

Q4. Sigma Notation		
Assessment Objectives	Solution	Examiner's Feedback
Simplifying expression by partial fractions	(i) Method 1: $\begin{aligned} \frac{3 r(r+1)+1}{r^{3}(r+1)^{3}} & =\frac{3 r^{2}+3 r+1}{r^{3}(r+1)^{3}} \\ & =\frac{\left(r^{3}+3 r^{2}+3 r+1\right)-r^{3}}{r^{3}(r+1)^{3}} \\ & =\frac{(r+1)^{3}-r^{3}}{r^{3}(r+1)^{3}} \\ & =\frac{1}{r^{3}}-\frac{1}{(r+1)^{3}} \end{aligned}$ where $A=1$ and $B=-1$. Method 2: $\begin{aligned} & \frac{3 r(r+1)+1}{r^{3}(r+1)^{3}}=\frac{A}{r^{3}}+\frac{B}{(r+1)^{3}} \\ & 3 r(r+1)+1=A(r+1)^{3}+B r^{3} \end{aligned}$ By comparing coefficient of r^{0} : A=1 By comparing coefficient of $r^{3}: A+B=0 \Rightarrow B=-1$ $\frac{3 r(r+1)+1}{r^{3}(r+1)^{3}}=\frac{1}{r^{3}}-\frac{1}{(r+1)^{3}}$	This part was generally well attempted. Students should compare the coefficients on both sides to find the unknowns.
Summation of series method of differences	$\begin{aligned} & \text { (ii) } \frac{7}{r^{2}}+\frac{19}{(2)^{3}(3)^{3}}+\ldots+\frac{6 n(2 n+1)+1}{(2 n)^{3}(2 n+1)^{3}} \\ & \quad=\sum_{r=1}^{2 n} \frac{3 r(r+1)+1}{r^{3}(r+1)^{3}} \end{aligned}$	This part was not well attempted. The result in (i) can be used to find the expression for the series without using sigma notation.

	$\begin{aligned} & =\sum_{r=1}^{2 n}\left[\frac{1}{r^{3}}-\frac{1}{(r+1)^{3}}\right] \\ & =\frac{1}{1^{3}}-\frac{1}{2^{3}} \\ & +\frac{1}{2^{3}}-\frac{1}{3^{3}} \\ & +. . \\ & +\frac{1 / 1}{(2 n-1)^{3}}-\frac{1}{(2 n)^{3}} \\ & +\frac{1 / \frac{1}{(2 n)^{3}}-\frac{1}{(2 n+1)^{3}}}{(2 n+1)^{3}} \\ & =1-\frac{1}{(2 n} \end{aligned}$	Students were generally not familiar with the sigma notation to represent the series. The sigma notation should be used with integral limits. A significant percentage of students wrote the following sigma notation: $\sum_{r=0.5}^{n} \frac{3 r(r+1)+1}{r^{3}(r+1)^{3}}$ where the lower limit was 0.5 and the running index was assumed to increase by 0.5 each time. Some students were also confused by the last term in the series. Though they recognized that r has been replaced by $2 n$, they did not think of $2 n$ as the upper limit. Instead they represented the series wrongly by the following sigma notation $\sum_{r=1}^{n} \frac{6 r(2 r+1)+1}{(2 r)^{3}(2 r+1)^{3}}$ which only included the even terms of the given series (i.e. $\left.2^{\text {nd }}, 4^{\text {th }}, 6^{\text {th }}, \ldots,(2 n)^{\text {th }}\right)$. Some students found a positive value of B in (i) and blindly performed method of difference even though it was not possible. Credit was not given in such cases.	
Limits, Sum to infinity and use of standard series expansion $\\| A S$ ExamPap	$\text { (iii) } \text { As } 2 n \rightarrow \infty, \frac{1}{(2 n+1)^{3}} \rightarrow 0,1-\frac{1}{(2 n+1)^{3}} \rightarrow 1$	This part was not well attempted. Students were able to recognize that the question asked for the long-term average. However, they were confused by the running index r and the unknown constant n. A significant percentage of students considered the case where $r \rightarrow \infty$ instead of $2 n \rightarrow \infty$.	

	$\begin{aligned} & \sum_{r=1}^{\infty}\left[\frac{3 r(r+1)+1}{r^{3}(r+1)^{3}}+\left(\frac{1}{2}\right)^{r}\right] \\ & =\sum_{r=1}^{\infty} \frac{3 r(r+1)+1}{r^{3}(r+1)^{3}}+\sum_{r=1}^{\infty}\left(\frac{1}{2}\right)^{r} \\ & =1+\left[\frac{1}{2}+\left(\frac{1}{2}\right)^{2}+\left(\frac{1}{2}\right)^{3}+\ldots\right] \\ & =1+\frac{1 / 2}{1-1 / 2} \\ & =2 \end{aligned}$	Some students did not know how to present their analysis and solutions mathematically for the first summation. They wrongly wrote $\sum_{r=1}^{\infty} \frac{3 r(r+1)+1}{r^{3}(r+1)^{3}}=1-\frac{1}{(2(\infty)+1)^{3}}$. As the symbol ∞ is not a number, the presentation should be $\sum_{r=1}^{\infty} \frac{3 r(r+1)+1}{r^{3}(r+1)^{3}}=\lim _{n \rightarrow \infty}\left(1-\frac{1}{(2 n+1)^{3}}\right)=1$ A significant percentage of students had the misconception that if $\left(\frac{1}{2}\right)^{r} \rightarrow 0$ as $r \rightarrow \infty$, $\sum_{r=1}^{\infty}\left(\frac{1}{2}\right)^{r}=0$ For students who recognized that they should use the formula for sum to infinity, - some were not able to identify the first term correctly where they assumed $a=1$, - some were not able to identify the value of common ratio r as they were confused with the running index r.

Q5. A.P. \& G.P.			
Finding sum of a finite arithmetic series	Solution		Examiner's Feedback Some students wrote $T_{n}=300+(n-1) 20 \geq 50000$ instead of $\frac{n}{2}(2(300)+(n-1) 20) \geq 50000$ Some students put " >50000 " instead of " ≥ 50000 ".
	(i) a n 5 5 5 n M	$0, d=20$ f seats in the first n rows ≥ 50000 $\begin{aligned} & \frac{n}{2}(2(300)+(n-1) 20) \geq 50000 \\ & \left\lvert\, \frac{n}{2}(2(300)+(n-1) 20)\right. \\ & \hline 49020 \\ & \hline 50460 \\ & \hline 51920 \\ & \hline \end{aligned}$ um no. of rows is 58 .	
Finding nth term of a finite geometric series	(ii) $a=$ Pric	$r=0.9$ f seats in 45 th row $=60(0.9)^{3-1}=\$ 48.60$	Part (ii) is generally well done.
Finding nth term of a finite arithmetic series	(iii) Num Creat $\frac{n}{2}(2$ app Only 88660031	$\begin{aligned} \text { er of seats in } 60 \text { th row }= & 300+(60-1) 20 \\ & =1480 \end{aligned}$ g new AP starting from last row, $a=1480, d=-20$ $\begin{aligned} 480)+(n-1)(-20)) & =51000 \\ n & =53.28 \end{aligned}$ r of seats in Category 3 $=\frac{20}{2}[2(1480)+(20-1)(-20)]=25800$	There were confusion in the number of seats in each category as students tend to mixed up the calculations for the number of seats in the first and third category. A number of students tried to use Geometric Progression to calculate the number of seats for each category.

ExamPap Islandwide Delivery \| Wh	Number of seats in Category 2 $\begin{aligned} & =\mathrm{S}_{40}-\mathrm{S}_{20}=\frac{40}{2}[2(1480)+(40-1)(-20)]-25800=43600-25800 \\ & =17800 \end{aligned}$ Number of seats in Category 1 $\begin{aligned} =51000-\mathrm{S}_{40} & =51000-43600=7400 \\ \text { Total revenue } & =7400(60)+17800(60)(0.9)+25800(60)(0.9)^{2} \\ & =\$ 2659080 \end{aligned}$ Alternative $a=300, d=20$ Number of seats in Category 3 $\begin{aligned} & =\mathrm{S}_{60}-\mathrm{S}_{40} \\ & =\frac{60}{2}[2(300)+(60-1)(20)]-\frac{40}{2}[2(300)+(40-1)(20)] \\ & =53400-27600 \\ & =25800 \end{aligned}$ Number of seats in Category 2 $\begin{aligned} & =\mathrm{S}_{40}-\mathrm{S}_{20} \\ & =27600-\frac{20}{2}[2(300)+(20-1)(20)] \end{aligned}$ Number of seats in Category 1 $=51000-25800-17800=7400$	

	Total revenue $=7400(60)+17800(60)(0.9)+25800(60)(0.9)^{2}$	
$=\$ 2659080$		

Page 10 of 29

O6. Maclaurin's Series
Assessment Objectives
Solution
Examiner's Feedback
Implicit differentiation and use
$y=\sqrt{\mathrm{e}^{x} \cos x}$
$y^{2}=\mathrm{e}^{x} \cos x$
Differentiating w.r.t. x,
$2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}=\mathrm{e}^{x} \cos x-\mathrm{e}^{x} \sin x$
$2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}=y^{2}-\mathrm{e}^{x} \sin x$
Differentiating w.r.t. x,
$2\left(\frac{\mathrm{~d} y}{\mathrm{~d} x}\right)^{2}+2 y \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}=2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}-\left(\mathrm{e}^{x} \sin x+\mathrm{e}^{x} \cos x\right)$
$2\left(\frac{\mathrm{~d} y}{\mathrm{~d} x}\right)^{2}+2 y \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}=2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}+\left(2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}-y^{2}\right)-y^{2}$
$2\left(\frac{\mathrm{~d} y}{\mathrm{~d} x}\right)^{2}+2 y \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}=4 y \frac{\mathrm{~d} y}{\mathrm{~d} x}-2 y^{2}$
$\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)^{2}+y \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}=2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}-y^{2}$ (shown)

A lot of candidates did not square the y and then implicitly differentiate, but instead tried to bulldoze their way through the repeated differentiation, to various outcomes. Much time could have been saved if the correct preparation for implicit differentiation was used.

Many students could not get to the final required form of the equation because they could not see the appropriate substitution for $\mathrm{e}^{x} \sin x$ or $\mathrm{e}^{x} \cos x$

Some notations which are not correct are used, eg: $\frac{\mathrm{d} y}{\mathrm{~d} x}\left(y^{2}\right)=\frac{\mathrm{d} y}{\mathrm{~d} x}\left(\mathrm{e}^{x} \cos x\right)$
Or silly errors like $\mathrm{e}^{x} \cos x$ becoming ex $\cos x$ and $\cos ^{2} x$ becoming $\cos 2 x$

Some students gave too many terms and had a hard time manipulating. They have to realize that they can truncate the series for terms beyond x^{3}. Some students truncate too much too early, ending up with the incorrect answer too.

A few students square their expression in (ii) to compare with the standard series expansion of y^{2} and concluded it is correct. Credit is not given because $A^{2}=B^{2}$ does not necessarily imply $A=B$

Page 14 of 29

Page 16 of 29

Page $\mathbf{1 7}$ of $\mathbf{2 9}$

Q8. Complex Numbers		
Assessment Objectives	Solution	Examiner's Feedback
Solving of simultaneous equations	(a) $\begin{align*} & 3 z-\mathrm{i} w=12+19 \mathrm{i} \\ & 2 z^{*}+3 w=16-23 \mathrm{i} \tag{2} \end{align*} \quad \cdots \cdots \cdot(1)$ $(1) \times 3: 9 z-3 \mathrm{i} w=36+57 \mathrm{i}$ (2) $\times \mathrm{i}: 2 \mathrm{iz} *+3 \mathrm{i} w=16 \mathrm{i}+23$ $(3)+(4): 9 z+2 i z^{*}=73 i+59$ Let $\quad z=x+\mathrm{i} y, \quad$ so $z^{*}=x-\mathrm{i} y$ $9(x+\mathrm{i} y)+2 \mathrm{i}(x-\mathrm{i} y)=73 \mathrm{i}+59$ Comparing real and imaginary parts, $9 x+2 y=59 \text { and } 9 y+2 x=73$ Solving, $\begin{aligned} & \therefore=\begin{array}{l} x=5 \quad \text { and } \quad y=7 \\ z=5+7 \mathrm{i} \end{array} \\ & \text { From (2), } 2 z *+3 w=16-23 \mathrm{i} \\ & \quad \begin{array}{l} w=\frac{1}{3}\left(16-23 \mathrm{i}-2 z^{*}\right)=\frac{1}{3}(16-23 \mathrm{i}-2(5-7 \mathrm{i})) \\ w=2-3 \mathrm{i} \end{array} \end{aligned}$	Majority of the candidates lost their final mark because they simply cannot copy the question properly. Many wrote 9 i instead of 19 i , this is unacceptuble! Some candidates miss out on the instruction "Do not use calculator in answering the question", they still write "using GC" while solving the simultaneous equation after comparing real and imaginary parts. Some candidates took a longer way by letting $z=a+b i$ and $w=c+d i$ and solved for 4 unknowns. It is a tedious process and they ended up using GC to solve. This is not recommended. Some candidates made a conceptual error. After making z the subject from equation (1): $z=\frac{1}{3}(12+(19+w)$ i $)$, they went on to concude that $z^{*}=\frac{1}{3}(12-(19+w) \mathrm{i})$ which is incorrect! They cannot do this step here as w is a complex number.
Complex conjugate rootsExamPap	(b) $(\mathbf{i})\rangle$ Since all coefficients are real, the other root is $(-1-\sqrt{3} \mathrm{i})$. $\begin{aligned} & {[z-(-1+\sqrt{3} \mathrm{i})][z-(-1-\sqrt{3} \mathrm{i})]=z^{2}+2 z+4} \\ & z^{4}+3 z^{3}+4 z^{2}-8=\left(z^{2}+2 z+4\right)\left(z^{2}+a z+b\right) \end{aligned}$	Many candidates are unsure about factors and roots. Some candidates gave the conjugate as $1+\sqrt{3} \mathrm{i}$ (negate the real part) which is wrong.

Page 18 of $\mathbf{2 9}$

	Comparing coefficient of $z^{3}: 3=a+2 \Rightarrow a=1$ Comparing coefficient of $z^{2}: 4=b+2 a+4 \quad \Rightarrow b=-2$ Comparing coefficient of $z: \quad 0=2 b+4 a \quad \Rightarrow b=-2$ $z^{4}+3 z^{3}+4 z^{2}-8=\left(z^{2}+2 z+4\right)\left(z^{2}+z-2\right)$	Candidates who did not get full credit struggled at algebraic manipulations when comparing coefficients/ long division. There is no need to solve for the roots.
Complex numbers in exponential form	(b)(ii) $\begin{aligned} & \mathrm{e}^{p+\mathrm{iq}}=\mathrm{z}_{1}^{5} \\ & \mathrm{z}_{1}=-1+\sqrt{3 \mathrm{i}}=2 \mathrm{e}^{\mathrm{i}\left(\frac{2 \pi}{3}\right)} \\ & \mathrm{e}^{p} \mathrm{e}^{\mathrm{iq}}=\left(2 \mathrm{e}^{\mathrm{i}\left(\frac{2 \pi}{3}\right)}\right)^{5} \\ & \mathrm{e}^{p} \mathrm{e}^{\mathrm{iq}}=32 \mathrm{e}^{\mathrm{i}\left(\frac{10 \pi}{3}\right)} \\ & \mathrm{e}^{p}=32 \Rightarrow p=\ln 32 \\ & q=\frac{10 \pi}{3}-\frac{12 \pi}{3}=-\frac{2 \pi}{3} \end{aligned}$	Many left this blank. Candidates who expanded this using Cartesian form often struggled, they are recommended to convert to modulus-argument form. Some forgot about the power 5 . Candidates need to practice more on finding arguments of complex number. $z_{1}=-1+\sqrt{3}$ i lies in the $2^{\text {nd }}$ quadrant and hence, $\arg \left(z_{1}\right)=\pi-\tan ^{-1}\left\|\frac{\sqrt{3}}{-1}\right\| \quad$ (when finding basic angle, always $\tan ^{-1}$ the positive real/ im parts) Some did not know how to convert q into the principal range. They need to subtract multiples of 2π

slandwide Delivery I Whatsapp Only 88660031

Equation of the line passing though N and Q is

$$
\begin{aligned}
\underset{\sim}{r} & =\left(\begin{array}{c}
-1 \\
-2 \\
3
\end{array}\right)+\mu\left(\begin{array}{c}
-1 \\
2 \\
0
\end{array}\right), \mu \in \mathbb{R} \\
& =\left(\begin{array}{c}
-1-\mu \\
-2+2 \mu \\
3
\end{array}\right)
\end{aligned}
$$

When the line passes through N on p

Common mistake was for students to erroneously assume that point Q lies on the plane. A quick check would have showed otherwise.

A handful of students were able to visualize the relationship between l_{1}, p and Q to discover that the perpendicular distance can be found efficiently using the length of projection formula.

$$
\overrightarrow{A Q}=\overrightarrow{O Q}-\overrightarrow{O A}=\left(\begin{array}{c}
-1 \\
-2 \\
3
\end{array}\right)-\left(\begin{array}{c}
-1 \\
8 \\
3
\end{array}\right)=\left(\begin{array}{c}
0 \\
-10 \\
0
\end{array}\right)
$$

$|\overrightarrow{A Q} \cdot \hat{\sim}|=\left|\left(\begin{array}{c}0 \\ -10 \\ 0\end{array}\right) \cdot \frac{\left(\begin{array}{c}-1 \\ 2 \\ 0\end{array}\right)}{\sqrt{1^{2}+2^{2}}}\right|=\frac{20}{\sqrt{5}}=4 \sqrt{5}$

Page 21 of 29

		$\therefore \overrightarrow{O N}=\left(\begin{array}{c} -1-\mu \\ -2+2 \mu \\ 3 \end{array}\right)=\left(\begin{array}{c} -1-4 \\ -2+8 \\ 3 \end{array}\right)=\left(\begin{array}{c} -5 \\ 6 \\ 3 \end{array}\right)$ Shortest Distance $\begin{aligned} & =\|\overrightarrow{Q N}\|=\|\overrightarrow{O N}-\overrightarrow{O Q}\| \\ & =\left\|\left(\begin{array}{c} -5 \\ 6 \\ 3 \end{array}\right)-\left(\begin{array}{c} -1 \\ -2 \\ 3 \end{array}\right)\right\| \\ & =\left\|\left(\begin{array}{c} -4 \\ 8 \\ 0 \end{array}\right)\right\| \\ & =\sqrt{4^{2}+8^{2}} \\ & =\sqrt{80} \\ & =4 \sqrt{5} \end{aligned}$	
Shortest distance	KIAS ExamPap Islandwide Delivery I Wha	Shortest distance between Q and l_{1}	There were some students who identified the lengths to be found for (ii) and (iii) wrongly (i.e. gave (iii) answer for (ii) and vice versa). They were still given the credit. Alternative methods (e.g. using length of projection) were accepted.

Page 22 of 29

		$\begin{aligned} & =\sqrt{(4 \sqrt{5})^{2}+\left(\frac{5}{3} \sqrt{6}\right)^{2}} \\ & =\sqrt{(\sqrt{80})^{2}+\left(\frac{25}{9}\right)(6)} \\ & =\sqrt{(80)+\left(\frac{150}{9}\right)} \\ & =\sqrt{\frac{290}{3}} \text { or }=\frac{1}{3} \sqrt{870} \text { or } 9.83(3 \text { s.f }) \end{aligned}$	
Equation of line	KIASU ExamPape Islandwide Delivery I What	(iv) Direction vector of l_{2} $\begin{aligned} & =\left(\begin{array}{l} 2 \\ 1 \\ 5 \end{array}\right) \times\left(\begin{array}{c} -1 \\ 2 \\ 0 \end{array}\right) \\ & =\left(\begin{array}{c} (0)-(2 \times 5) \\ -[(0)-(-1 \times 5)] \\ (4)-(-1) \end{array}\right) \\ & =\left(\begin{array}{c} -10 \\ -5 \\ 5 \end{array}\right)=-5\left(\begin{array}{c} 2 \\ 1 \\ -1 \end{array}\right) \end{aligned}$ Vector equation of the line l_{2} is $=\sum_{2}^{\sim}=\left(\begin{array}{c} -1 \\ -2 \\ 3 \end{array}\right)+t\left(\begin{array}{c} 2 \\ 1 \\ -1 \end{array}\right), t \in \mathbb{R}$	Most students were unable to visualize the relationship between l_{2}, l_{1} and p. They tried to work backwards using the given Cartesian equation to obtain the vector equation of l_{2} in an attempt to fulfill the question requirement of showing the process to find l_{2}.

Page 23 of 29

	$\begin{array}{cr} x=-1+2 t & t=\frac{x+1}{2} \\ \Rightarrow y=-2+t \Rightarrow t=y+2 \\ z=3-t & t=3-z \end{array}$ Cartesian equation of the line l_{2} is $\frac{x+1}{2}=y+2=3-z$	
Reflection of line about a plane	(v) Using Ratio Theorem app Ony8866003since N is the mid-point of $\overrightarrow{O Q}$ and $\overrightarrow{O Q^{\prime}}$, $\begin{aligned} & \overrightarrow{O N}=\frac{1}{2}\left(\overrightarrow{O Q}+\overrightarrow{O Q^{\prime}}\right) \\ & \overrightarrow{O Q^{\prime}}=2 \overrightarrow{O N}-\overrightarrow{O Q} \end{aligned}$	Most students were unable to visualize the situation when a line parallel to a plane is reflected in the plane. They did not realise that the line and reflected lines both share the same direction vector. Students who made mistakes in previous parts (e.g. position vector of foot of perpendicular) were given credit for their attempt to apply Ratio Theorem.

Page 24 of 29

	$\overrightarrow{O Q^{\prime}}=2\left(\begin{array}{c} -5 \\ 6 \\ 3 \end{array}\right)-\left(\begin{array}{c} -1 \\ -2 \\ 3 \end{array}\right)=\left(\begin{array}{c} -9 \\ 14 \\ 3 \end{array}\right)$ Vector equation of the line l_{3} is $\underset{\sim}{r}=\left(\begin{array}{c} -9 \\ 14 \\ 3 \end{array}\right)+s\left(\begin{array}{c} 2 \\ 1 \\ -1 \end{array}\right), s \in \mathbb{R}$	

Page $\mathbf{2 5}$ of $\mathbf{2 9}$

Q10. Differential Equations			
Assessment Objectives	Solution		Examiner's Feedback
Formulate of differential equation	(i) Growth rate $\propto \sqrt{L}$ Destruction rate $\propto L$ $\frac{\mathrm{d} L}{\mathrm{~d} t}=a \sqrt{L}-b L$ When $L=1, \frac{\mathrm{~d} L}{\mathrm{~d} t}=1$ $\begin{equation*} a-b=1 \tag{1} \end{equation*}$ When $L=4, \frac{\mathrm{~d} L}{\mathrm{~d} t}=-2$ $\begin{equation*} a \sqrt{4}-4 b=-2 \tag{2} \end{equation*}$ $2 a-4 b=-2$ Solving, $a=3, b=2$ $\frac{\mathrm{d} L}{\mathrm{~d} t}=3 \sqrt{L}-2 L \text { (shown) }$		Some students did not manage to formulate two equations with two unknowns as they set $a=b$ Most of those who managed to get the two equations with two unknowns proceeded to get the correct values of a and b. Many students did not attempt this part.
Solving differential equation	(ii) Using substitution: $L=y^{2}$ Differentiate with respect to t : $\begin{aligned} & \frac{\mathrm{d} L}{\mathrm{~d} t}=2 y \frac{\mathrm{~d} y}{\mathrm{~d} t} \\ & 2 y \frac{\mathrm{~d} y}{\mathrm{~d} t}=3 y-2 y^{2} \\ & 2 \frac{\mathrm{~d} y}{\mathrm{~d} t}=3-2 y \\ & \frac{\mathrm{~d} y}{\mathrm{~d} t}=\frac{3-2 y}{2} \end{aligned}$	Using substitution: $y=\sqrt{L}$ Differentiate with respect to t : $\begin{aligned} \frac{\mathrm{d} y}{\mathrm{~d} t} & =\frac{1}{2} L^{-\frac{1}{2}} \frac{\mathrm{~d} L}{\mathrm{~d} t} \\ \frac{\mathrm{~d} y}{\mathrm{~d} t} & =\frac{1}{2} L^{-\frac{1}{2}}(3 \sqrt{L}-2 L) \\ & =\frac{3}{2}-\sqrt{L}=\frac{3}{2}-y \\ & =\frac{3-2 y}{2} \end{aligned}$	Most students used $L=y^{2}$. The minority who used $y=\sqrt{L}$ are also able to get the correct equation.

$\begin{aligned} & \frac{\mathrm{d} y}{\mathrm{~d} t}=\frac{3-2 y}{2} \\ & \frac{2}{3-2 y} \frac{\mathrm{~d} y}{\mathrm{~d} t}=1 \\ & \int \frac{2}{3-2 y} \frac{\mathrm{~d} y}{\mathrm{~d} t} \mathrm{~d} t=\int 1 \mathrm{~d} t \\ & -\int \frac{-2}{3-2 y} \mathrm{~d} y=t+C \\ & -\ln \|3-2 y\|=t+C \\ & \|3-2 y\|=\mathrm{e}^{-t-C} \\ & 3-2 y= \pm \mathrm{e}^{-C} \mathrm{e}^{-t} \\ & 3-2 y=A \mathrm{e}^{-t}, \text { where } A= \pm \mathrm{e}^{-C} \\ & 2 y=3-A \mathrm{e}^{-t} \\ & y=\frac{3-A \mathrm{e}^{-t}}{2} \\ & y=\sqrt{L}=\frac{3-A \mathrm{e}^{-t}}{2} \\ & L=\left(\frac{3-A \mathrm{e}^{-t}}{2}\right)^{2} \end{aligned}$ When $t=0, L=1$, ExAASU= $=\left(\frac{3-A \mathrm{e}^{-0}}{2}\right)^{2}$ Islandwide Delivery I What app Only 88660031 Since $y>0, \frac{3-A}{2}=1 \Rightarrow A=1$ $L=\left(\frac{3-\mathrm{e}^{-t}}{2}\right)^{2}$	Most students are able to identify this as a separation of variables DE. Many students did not include the modulus sign for the logarithm. Among those who did have the modulus sign, many removed the modulus and did not put \pm Many students stopped here without finding A.

Page 28 of $\mathbf{2 9}$

Limits	(iv) As $t \rightarrow \infty$, For Model A: $\mathrm{e}^{-t} \rightarrow 0, L \rightarrow\left(\frac{3}{2}\right)^{2}=\frac{9}{4}$ For Model B: $\tan ^{-1} t \rightarrow \frac{\pi}{2}, L \rightarrow 1+\frac{\pi}{2}$	Common mistake was using 90 instead of $\frac{\pi}{2}$. Angles should be in radians for calculus questions.

CATHOLIC JUNIOR COLLEGE
H2 MATHEMATICS
2019 JC2 PRELIMINARY EXAMINATION SOLUTION

Q1. System of Linear Equations

| Q1. System of Linear Equations | Solution | |
| :--- | :---: | :--- | :--- |
| Assessment Objectives | $\frac{13}{4}=a(1)+b(1)+\frac{1}{c}$ | Examiner's Feedback
 Solve system of linear equations.
 Most candidates were successful with
 the question except those who did not
 know how to handle the transformed
 coordinates or the replacement of $1 / c$ as
 another variable. There were also a lot of
 algebraic manipulation errors which
 reflected the lack in numeracy skills of
 the candidature. There is also a
 significant group of candidates who
 attempted to solve the equations
 manually instead of using the GC, and
 most of them were unsuccessful. |

Q2. Vectors (Basic)

Assessment Objectives	Solution	Examiner's Feedback	
Concept of parallel vectors	(i) $\quad k \mathbf{p}=m \mathbf{q}$ where $m=(\mathbf{p} \cdot \mathbf{q}) \in \mathbb{R} \backslash\{0\}$ $\mathbf{p}=\frac{m}{k} \mathbf{q}=n \mathbf{q} \text { where } n=\frac{m}{k} \in \mathbb{R} \backslash\{0\}$ Since $\mathbf{p}=n \mathbf{q}, \mathbf{p}$ and \mathbf{q} are parallel vectors.	This basic question proved to be difficult for most candidates, where only a handful provided a complete solution with explanation. Majority of the accepted answers simply contain the key word "parallel" with ambiguous statements and were given the benefit of doubt.	
Use of scalar product	(ii) $\quad k\|\mathbf{p}\|=\|\mathbf{p} \bullet \mathbf{q}\|\|\mathbf{q}\|$ Since \mathbf{p} and \mathbf{q} are parallel vectors from part (i), $\begin{aligned} & \theta=0^{\circ} \text { or } \theta=180^{\circ} \text { so } \cos \theta=1, \text { so }\|\mathbf{p} \bullet \mathbf{q}\|=\|\mathbf{p} \\|\|\mathbf{q}\| \\ & k\|\mathbf{p}\|=(\|\mathbf{p}\|\|\mathbf{q}\|)\|\mathbf{q}\| \\ & k=\|\mathbf{q}\|^{2} \quad \text { since }\|\mathbf{p}\| \neq 0 \\ & \|\mathbf{q}\|^{2}=k \\ & \|\mathbf{q}\|=\sqrt{k} \quad \text { since } k>0 . \end{aligned}$	This question was either not attempted or very badly attempted by the candidature. Almost every candidate performed division on the vectors directly, which is conceptually wrong, instead of applying modulus throughout to reduce the equation to that consisting of only scalars and the usual algebraic manipulation can be applied. Other errors include assuming that the vectors are in the same direction (excluding opposite as a possibility) and comparing coefficients.	

| Q3. Applications of Differentiation (f' graph) | | Examiner's Feedback | |
| :--- | :--- | :--- | :--- | :--- |
| Assessment Objectives | Solution | (i) | Generally students did quite ok for
 this part. Some did not present the
 turning points in coordinates form. |
| Sketching graph of $\mathrm{f}^{\prime}(x)$ | | | |

Page $\mathbf{3}$ of $\mathbf{2 0}$

Q4. Functions		
Assessment Objectives	Solution	Examiner's Feedback
Condition for existence of inverse function	(i) Any horizontal line cuts the graph of f at most once, f is a one-one function, f^{-1} exists.	Badly attempted. Common mistakes: Many used only one counter example to show that f is one-one.
Able to resolve the modulus based on the domain and able to find the inverse function.	(ii) $\begin{aligned} & y=x(3-x) \\ & y=3 x-x^{2} \\ & x^{2}-3 x+y=0 \\ & \left(x-\frac{3}{2}\right)^{2}-\frac{9}{4}+y=0 \\ & x=\frac{3}{2} \pm \sqrt{\frac{9}{4}-y} \end{aligned}$ Since $x>2, \quad x=\frac{3}{2}+\sqrt{\frac{9}{4}-y}$ $\mathrm{f}^{-1}(x)=\frac{3}{2}+\sqrt{\frac{9}{4}-x}, \quad \mathrm{D}_{\mathrm{f}^{-1}}=(0,2]$	Badly done. Many did not know how to resolve the modulus by looking at the domain. Some made algebraic slip and hence not able to perform completing the square to make x the subject. However majority were able to find the domain.

Sketch of piece wise functions			Most students attempted this part and were able to get either 1 or 2 marks. Students need to pay more attention to the presentation such as to label the coordinates of the end points, inclusive or exclusive.
Composite function with piece wise.		$\begin{aligned} \operatorname{gf}(x) & =2(x(3-x))-2 \\ & =2\left(3 x-x^{2}-1\right) \end{aligned}$	Badly attempted. Many students did not seem to understand the condition of the existence of composite function.
Range of composite function.	(v)	$\mathrm{R}_{\mathrm{gf}}=(-2,2]$	Badly done. Students who used the mapping method were able to get the answer easily.

05. Parametric Equations

Assessment Objectives	Solution	Examiner's Feedback
Sketch parametric graphs	(i) At $\theta=-\pi, x=1-\sin (-\pi)=1, y=-\pi+\cos (-\pi)=-\pi-1 \quad \therefore(1,-\pi-1)$ At $\theta=\frac{\pi}{2}, x=1-\sin \left(\frac{\pi}{2}\right)=0, y=\frac{\pi}{2}+\cos \left(\frac{\pi}{2}\right)=\frac{\pi}{2} \quad \therefore\left(0, \frac{\pi}{2}\right)$	Many candidates failed to give the coordinates in the exact form, as required by the question. They are also unable to sketch the curve in the specified domain. Endpoints must be clearly labelled with solid circles since both endpoints are included.
Gradient of parametric equations	(ii) $\begin{aligned} & x=1-\sin \theta, \quad y=\theta+\cos \theta \\ & \frac{\mathrm{d} x}{\mathrm{~d} \theta}=-\cos \theta, \quad \frac{\mathrm{d} y}{\mathrm{~d} \theta}=1-\sin \theta \\ & \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1-\sin \theta}{-\cos \theta}=\frac{\sin \theta-1}{\cos \theta} \end{aligned}$ $\text { As } \theta \rightarrow-\frac{\pi}{2}, \cos \left(-\frac{\pi}{2}\right) \rightarrow 0, \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{1-\sin \theta}{\cos \theta} \rightarrow \infty$ The tangent is vertical. ExamPathe tangent is parallel to y-axis.	Finding $\frac{\mathrm{d} y}{\mathrm{~d} x}$ was generally wellattempted. However some candidates are still confused over differentiation of simple trigo terms and carelessness. The last part was badly attempted. Candidates found the value of $\frac{\mathrm{d} y}{\mathrm{~d} x}$ but did not proceed to explain "what happened to the tangent". Those who wrote "gradient of tangent tends to infinity" were given the credit. However, "tangent tends to infinity" is not accepted as tangent is a line!

		Candidates should learn how to spell "vertical" properly.
Equation of normal	(iii) At $P, \theta=p,(1-\sin p, p+\cos p)$ $\text { Gradient of normal }=\frac{\cos p}{1-\sin p}$ Equation of normal at P : $y-(p+\cos p)=\frac{\cos p}{1-\sin p}(x-(1-\sin p))$ At y-axis, $x=0$: $\begin{aligned} & y-(p+\cos p)=\frac{\cos p}{1-\sin p}(0-(1-\sin p)) \\ & y-p-\cos p=-\cos p \\ & y=p \\ & \therefore Q(0, p) \end{aligned}$	Majority of the candidates could give the gradient of normal based on their results in (ii), while some still struggled. Many went on to assume values of p to be $0, \frac{\pi}{4}$ or $\frac{\pi}{2}$ which is not needed. They merely used the results $(0, p)$ to verify instead of showing. Algebraic manipulation needs to be further strengthened.
Area involving parametric equations	(iv) Integrating abt y-axis:	This was badly attempted, showing that candidates have very weak foundation in finding areas involving parametric equations. Diagram has to be aided to solve this part.

Locus	(v) At $R, y=0$, $\begin{aligned} & 0-(p+\cos p)=\frac{\cos p}{1-\sin p}(x-(1-\sin p)) \\ &-p-\cos p=\frac{\cos p}{1-\sin p} x-\cos p \\ & \frac{\cos p}{1-\sin p} x=-p \\ & x=\frac{p(\sin p-1)}{\cos p} \\ & \therefore R\left(\frac{p(\sin p-1)}{\cos p}, 0\right) \end{aligned}$ Midpoint of $Q R$: $\begin{aligned} & \left(\frac{0+\frac{p(\sin p-1)}{\cos p}}{2}, \frac{p+0}{2}\right) \\ & \left(\frac{p(\sin p-1)}{2 \cos p}, \frac{p}{2}\right) \end{aligned}$ ExamPaper zcos p $y=\frac{p}{2} \Rightarrow p=2 y$ $x=\frac{y(\sin 2 y-1)}{\cos 2 y}$	Many left this part blank, simply because they are unsure of the word "locus". However, they are still encouraged to continue finding the midpoint and gain some credit. There is no need to bring in vectors here to find the midpoint. The cohort needs to go and revise what is meant by "locus"!

Q6. Discrete Random Variables

Assessment Objectives	Solution							Examiner's Feedback
The ability to list all possible outcomes and find their respective probabilities	(i)	x	\$10	\$20	\$40	\$80	\$160	A handful of students are confused over table of outcomes and probability distribution table.
		$\mathrm{P}(X=x)$	$\frac{1}{9}$	$\frac{2}{9}$	$\frac{1}{3}$	$\frac{2}{9}$	$\frac{1}{9}$	
HOT - to identify and use the concept of expectation as long-term average loss in this context	(ii)	$\mathrm{E}(X)=10\left(\frac{1}{9}\right)+20\left(\frac{2}{9}\right)+40\left(\frac{1}{3}\right)+80\left(\frac{2}{9}\right)+160\left(\frac{1}{9}\right)=\$ 54.44$ Since $\$ 54.44$ should be the profit, which is 40% of $\$ R$, Therefore, $0.4 R=54.444$, Hence, need to set R to be $\$ 136$						Most students were able to find expectation but evaluated it wrongly due to sheer carelessness in pressing the calculator.
Finding the variance of a d.r.v	(iii)	$\operatorname{Var}(X)$ Students recalled the variance formula $=\mathrm{E}\left(X^{2}\right)-[\mathrm{E}(X)]^{2}$ wrongly. For those who did so correctly, the numerical value was often wrong. $=10^{2}\left(\frac{1}{9}\right)+20^{2}\left(\frac{2}{9}\right)+40^{2}\left(\frac{1}{3}\right)+80^{2}\left(\frac{2}{9}\right)+160^{2}\left(\frac{1}{9}\right)-\left(\frac{490}{9}\right)^{2}$ Many students assumed normal distribution for X and went on to find Hence, $\sigma=\sqrt{1935.8}=44.0$ $\mathrm{P}(X<\sigma)$. They failed to recognize that this question involves discrete random variable.						

slandwide Delivery | Whatsapp Only88660031

Page $\mathbf{1 1}$ of $\mathbf{2 0}$

Q7. Correlation and Regression			
Assessment Objectives	Solution		Examiner's Feedback
Understand that (\bar{T}, \bar{x}) always lie on the regression line		$\begin{aligned} & x=2.94857 T+146.238 \\ & \frac{1474+k}{6}=2.94857(50)+146.238 \\ & k=288 \quad(3 \mathrm{sf}) \end{aligned}$	Common mistake is to find k by substituting $T=60$ into the given regression line.
Scatter diagram.	(i)		Common mistake is to take x as the horizontal axis (independent variable). A lot of students also did not label the axes nor the greatest and smallest x and y values.
Linear transformation	(ii)	Least square estimate of a is $5.12898=5.13(3 \mathrm{sf})$ Least square estimate of b is $0.0098734=0.00987$ (3 sf) r between T and $\ln x$ is $0.990(3 \mathrm{sf})$	Quite a number of students did not realised that they can/must use $k=288$ to find the least square estimates of a and b, as well as the value of r between T and $\ln x$. Hence not being able to get the correct answers.
Able to compare the models based on the scatter diagram and the r value.	(iii)	In (i), as T increases, x increases at an increasing rate instead of constant rate. In part (ii), the r value between T and $\ln x$ as compared to the r value between T and x is closer to 1 . Fence $\ln x=0.0098734 T+5.12898$ is the better model.	A lot of students only managed to get the part on comparing the r values between T and $\ln x$ and between T and x. While only some managed to describe that "As T increases, x increases at an increasing rate instead of constant rate." on the graph of (i).

Page 12 of $\mathbf{2 0}$

Able to use the appropriate line to do the prediction and knowing the factors of the reliability.	(iv)	$\begin{aligned} & \ln (300)=0.0098734 T+5.12898 \\ & T=58.2 \quad(3 \mathrm{sf}) \end{aligned}$ The prediction is reliable as $x=300$ is within the data range of x and r value is close to 1 .	Quite a number of students uses 3s.f. for their intermediate steps for calculations of the estimate for T and end up with a less accurate answer. A number of students wrote "both x and T are in the data range hence it is a reliable prediction." Instead of " $x=300$ is within the data range of x ". A lot of students also missed out " r value is close to 1 " as part of the reasons for reliability of the prediction.

Page 14 of 20

		Hence, least $n=21$	Some looked at the wrong range of n as they had compared the probabilities against 0.001 instead of 0.01 .
Identifying the need to apply the central limit theorem and obtain the correct parameters	(iii)	From (i), Let X be the number of bullseyes in a series. Method 1: Let \bar{X} be the average number of bullseyes per series. Since sample size $n=40$ is sufficiently large, $\bar{X} \sim \mathrm{~N}\left(15 \times 0.7, \frac{15 \times 0.7 \times 0.3}{40}\right)$ approximately by Central Limit Theorem Required probability $\begin{aligned} & =\mathrm{P}(\bar{X}>10) \\ & =0.963 \end{aligned}$ Method 2: Let $X_{1}+X_{2}+\ldots+X_{40}$ be the total number of bullseyes for 40 series. Since sample size $n=40$ is sufficiently large, $X_{1}+X_{2}+\ldots+X_{40} \sim \mathrm{~N}(40(15 \times 0.7), 40(15 \times 0.7 \times 0.3))$ approximately by Central Limit Theorem Required probability $\begin{aligned} & \stackrel{50031}{=} \mathrm{P}\left(X_{1}+X_{2}+\ldots+X_{40}>40 \times 10\right) \\ & =0.963 \end{aligned}$	This part was badly done. Students should pick out the keywords 'estimate' and 'on average' in the question. A large percentage of students failed to - recognize the use of Central Limit Theorem for the distribution of the sample mean, - identify the sample size 40 correctly, - identify the success event (getting a bullseye) and its probability of 0.7 correctly. A significant number of students wrote $X \sim \mathrm{~N}(10.5,3.15)$. Students should recognize that the random variable X does not follow a normal distribution. The Central Limit Theorem is used to approximate the distribution of sample mean \bar{X}, not X. A minority of students identified the total number of bullseyes as a binomial distribution and proceeded to find the required probability. They overlooked the keyword 'estimate' in this question part and thus were not given full credit.

Q9. Hypothesis Testing			
Assessment Objectives	Solution		Examiner's Feedback
Unbiased estimate of population mean and variance	(i)	Let X be the random variable denoting the speed of a car in the school compound. Unbiased estimate of population mean $=\frac{1325}{50}=26.5$ Unbiased estimate of population variance $=\frac{50}{49}\left[7.75^{2}\right]=61.288=61.3(3 \mathrm{sf})$	Almost all candidates could calculate unbiased est. of pop. Mean Most candidates could not recall the formula to link sample variance to unbiased ets. Of pop. Variance.
Apply to carry out the hypothesis testing with the concept of CLT.	(ii)	$\mathrm{H}_{0}: \mu=25$ $\mathrm{H}_{1}: \mu>25$, where μ is the population mean of X. Under H_{0}, Since n is large, by CLT, $\begin{aligned} & \bar{X} \sim \mathrm{~N}\left(25, \frac{61.288}{50}\right) \text { approx. } \\ & z_{\text {test }}=\frac{26.5-25}{\sqrt{61.288 / 50}} \end{aligned}$ Since p-value $=0.0877345>0.05$, we do not reject H_{0} and conclude that we have insufficient evidence at 5% level of significance that the mean speed of the cars is more than 25 .	Many candidates used 26.5 instead of 25 for the population mean. Many candidates did not get the correct phrasing of the conclusion, missing out key points such as 5% level of significance/ do not reject H_{0} etc
Able to use the critical approach to find the unknown n giventheam conclusion of the test.		$\begin{aligned} & \sqrt{x}^{\sim} \sim \mathrm{N}(25,36) \\ & z_{\text {test }}=\frac{26.5-25}{\sqrt{36 / n}}=0.25 \sqrt{n} \end{aligned}$	Many candidates are able to obtain critical value 1.28155 , but could not form correct inequality

Page 16 of 20

Q10. Normal Distribution			
Assessment Objectives	Solution		Examiner's Feedback
Use of symmetrical properties of the normal distribution curve Finding unknown parameters by means of standardization	(i)	$\begin{aligned} & 2 \mathrm{P}(X>45)=5 \mathrm{P}(X>65) \\ & \frac{\mathrm{P}(X>45)}{\mathrm{P}(X>65)}=\frac{5}{2} \end{aligned}$ \therefore From diagram, $\mathrm{P}(X<45)=\frac{2}{7}$ $\begin{aligned} & \mathrm{P}\left(\mathrm{Z}<\frac{45-55}{\sigma}\right)=\frac{2}{7} \\ & \frac{-10}{\sigma}=-0.56595 \\ & \sigma=17.7 \end{aligned}$	Many students were unable to observe the relationship and symmetry between $\mathrm{P}(X>65)$ and $\mathrm{P}(X<45)$ A significant number of students were not able to present the standardization steps correctly with errors and omissions in presentation. Students need to learn to use graphical representation for probabilities under Normal Distribution.
Proper combining of random variables, and finding the associated parameters Identifying the need to use the modulus in the setup and mannipulate it properly in the context of tirding probability	(ii) $\int=$ er tsapp On	$\left(X_{1}+X_{2}+X_{3}-4 Y\right) \sim \mathrm{N}\left(3 \times 55-4 \times 45,3 \times 17.669^{2}+4^{2} \times 10^{2}\right)$ Required probability $\begin{aligned} & =\mathrm{P}\left(\left\|X_{1}+X_{2}+X_{3}-4 Y\right\| \leq 10\right) \\ & =\mathrm{P}\left(-10 \leq\left(X_{1}+X_{2}+X_{3}-4 Y\right) \leq 10\right) \\ & =0.151 \end{aligned}$	Most common mistake by students was the inability to interpret the question and distinguish between $X_{1}+X_{2}+X_{3}$ and $3 X$ which led to the wrong calculation of variance. Also, majority of students did not take the modulus as required by the question.

Page 18 of $\mathbf{2 0}$

HOT- cannot simply just quote standard distribution of sample mean because now 2 different random variables are involved in the sample	(iii)	$\frac{X_{1}+X_{2}+X_{3}+Y_{1}+Y_{2}+Y_{3}+Y_{4}}{7} \sim \mathrm{~N}\left(\frac{3 \times 55+4 \times 45}{7}, \frac{3 \times 17.669^{2}+4 \times 10^{2}}{7^{2}}\right)$ Required probability $\begin{aligned} & =\mathrm{P}\left(\frac{X_{1}+X_{2}+X_{3}+Y_{1}+Y_{2}+Y_{3}+Y_{4}}{7} \geq 50\right) \\ & =0.446 \end{aligned}$	Many students were unable to interpret the question to obtain the random variable denoting the "mean score": $\frac{X_{1}+X_{2}+X_{3}+Y_{1}+Y_{2}+Y_{3}+Y_{4}}{7}$
Theory	(iv)	The random variables X and Y are independent of each other.	Many students were not aware that the conditions for summing random variables that are Normally distributed. There were some students who listed the conditions for a Binomial distribution instead.
Theory	(v)	Let C be the score of a randomly chosen student in Group C. If normal distribution is assumed, $\mathrm{P}(C<0)=0.0548$ A significant proportion would fall under an inadmissible area, hence normal distribution is not suitable as a model.	Most students gave vague answers about the large variance without substantiation.

Q11. Probability

Assessment Objectives	Solution		Examiner's Feedback
Systematic consideration/application of $\mathrm{P} \& \mathrm{C}$ techniques in given situation	(i)	No of ways to form the string unrestricted $=4^{5}-4=1020$ No of ways to form the string using 2 letters $={ }^{4} \mathrm{C}_{2} \times\left(2^{5}-2\right)=180$ Hence $\mathrm{P}(A)=\frac{180}{1020}=\frac{3}{17}=0.176$ No of ways to have a palindrome $=4^{3}-4=60$ Hence $P(B)=\frac{60}{1020}=\frac{1}{17}=0.0588$	Poorly attempted. Many candidates forgot that they are supposed to find a probability, not the number of ways, so end up with answers like $\begin{aligned} & \mathrm{P}(A)=24768737542 \text { or } \\ & \mathrm{P}(B)=-0.446 \end{aligned}$
Probability of intersection of two events is not necessarily the product of their probabilities Mathematical proof of independence	(ii)	No of ways to form palindrome of 2 letters $={ }^{4} \mathrm{C}_{2} \times\left(2^{3}-2\right) \quad$ or ${ }^{4} \mathrm{C}_{2} \times \frac{3!}{2!} \times 2=36$ Hence $\mathrm{P}(A \cap B)=\frac{36}{1020}=\frac{3}{85}=0.0353$ $\mathrm{P}(A) \times \mathrm{P}(B)=0.0104$ Since $\mathrm{P}(A \cap B) \neq \mathrm{P}(A) \times \mathrm{P}(B), A$ and B are not independent.	Some candidates have incorrect conceptual understanding. The tests they used were $\begin{aligned} & \mathrm{P}(A \cap B) \neq 0 \\ & \mathrm{P}(A \cap B) \neq P(A)+P(B) \end{aligned}$
Ability to identify that the question is describing the union of two events, and use the relevant formula to find the probability	(iii)	$\mathrm{P}(A \cup B)=\mathrm{P}(A)+\mathrm{P}(B)-\mathrm{P}(A \cap B)=\frac{3}{17}+\frac{1}{17}-\frac{3}{85}=\frac{1}{5}=0.2$	Some candidates have incorrect conceptual understanding. They used $\mathrm{P}(A \cup B)=\mathrm{P}(A)+\mathrm{P}(B)+\mathrm{P}(A \cap B)$ Some did not see that this is asking for the union in the first place.
Finding conditional probabilitymPap Islandwide Delivery 1 W		$\mathrm{P}(A \mid B)=\frac{\mathrm{P}(A \cap B)}{\mathrm{P}(B)}=\frac{3 / 85}{1 / 17}=\frac{3}{5}=0.6$	Some candidates have incorrect conceptual understanding. They assumed that $\mathrm{P}(A \cap B)=P(A) \cdot P(B)$

Page 20 of $\mathbf{2 0}$

