9. (a) F, B and D are points on the circle centre O.
$A B C$ and $C D E$ are tangents to the circle. Reflex angle $B O D=x^{\circ}$.

Find, in terms of x,

(i) angle BFD,
(ii) angle $B C D$.
(b) A, B and C are points on the circle centre O. $A B=12 \mathrm{~cm}$ and $A C=10 \mathrm{~cm}$.
Angle $B A C=1.2$ radians.

(i) Find the angle BOC.
(ii) Calculate the length of the chord $B C$.

9 In the diagram $A O B$ is the diameter of a circle with centre $O . A O B=16 \mathrm{~cm}$ and $\angle A D C=x^{\circ}$.

(a) Find, in terms of x,
(i) reflex $\angle A O C$,
(ii) $\angle A E C$, and
(iii) $\angle A B C$. Give reasons for your answers.
(b) If $\angle C O B=0.75$ radians, calculate
(i) the area of $\triangle B C O$,
(ii) the area of the shaded segment.

12 In the diagram, $T A$ is a tangent to the circle whose centre is O. $\angle T O B=72^{\circ}$ and $\angle T A B=38^{\circ}$.

(a) Stating the reasons clearly, calculate
(i) $\angle B C T$,
(ii) $\angle O B A$,
(iii) $\angle O T C$.
(b) If the radius of the circle is 9 cm , calculate
(i) the length of arc $B T$, [2]
(ii) the area of the minor sector $O B T$.

End of Paper

(a)

The diagram shows a circle $A B C D . A D$ is a diameter of the circle and $B F$ is parallel to $C D . F$ is the centre of the circle. Angle $A B E=62^{\circ}$ and angle $B C D=118^{\circ}$.

Calculate
(i) the angle $B F D$,
(ii) the angle $D B C$, stating your reasons clearly.
(b)

A, B and C are on level horizontal ground. $B C=78 \mathrm{~m}, A \hat{C} B=110^{\circ}$ and $A \hat{B} C=26^{\circ}$. C is due north of A. Calculate
(i) the bearing of B from C.
(ii) the bearing of A from B.
(iii) the length of $A C$.

1
(a) $\quad 8.1 \times 10^{13} \mathrm{~m}$
(b) $\quad 2.11 \times 10^{5}$

2

3
(a) 60 litres
(b) 28 bottles
(a) (i) $(2 x+3)(x-5)$
(ii) $(3 a-1)(b-5)$
(b) $\quad x=5.52$ or $x=-2.27$
(c)

$$
\frac{9 y^{10}}{5 x^{3}}
$$

4
(a) $\quad-2$
(b) $y=-2 x+10$
(c) $\quad C(8,-6)$
(d) $\quad D(0,10)$
(e) $\quad 17.9$ units
(b) $\quad \theta=50.5^{\circ}$
(b) $\quad m=1431 \mathrm{~g}$
(c) The larger jar gives the better value.
(a) $\quad p=-1$
(c) (i) $x=-0.3 \&-5.7$
(ii) $-1.02(\pm 0.1)$
(d) $x=-1.75 \&-6.3$

9
(a) (i) $2 x$
(\angle at centre $=$ twice \angle at circumference)
(ii) x
($\angle \mathrm{s}$ in the same segment)
(iii) $180-x$
(opp. $\angle \mathrm{s}$ of cyclic quad.)
(b) (i) $21.8 \mathrm{~cm}^{2}$
(ii) $2.19 \mathrm{~cm}^{2}$
(a) (i) 26 students
(ii) 38 marks
(iii) 25 marks
(iv) The students did better in Mathematics as the median mark is higher.
or
The students did better in English as the interquartile range is smaller hence results are more consistent
(b) (ii) $\frac{31}{66}$
(i)

9a)	$\begin{aligned} & A B^{2}=O B^{2}+O A^{2}-2(O B)(O A) \cos \left(90^{\circ}+24^{\circ}\right) \\ & A B=\sqrt{40^{2}+49.6^{2}-2(40)(49.6) \cos 114^{\circ}} \\ & =75.3 \mathrm{~m} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	
b)	$\begin{align*} & \frac{\sin \angle O B A}{49.6}=\frac{\sin 114^{\circ}}{75.33} \\ & \angle O B A=37.0^{\circ} \tag{1d.p.} \end{align*}$	$\begin{array}{\|l\|} \hline \text { M1 } \\ \text { A1 } \end{array}$	
c)	$\begin{aligned} & \text { Bearing of } B \text { from } A \\ & =114^{\circ}+37.0^{\circ}-90^{\circ} \\ & =061^{\circ} \end{aligned}$	A1	
d)	$\begin{array}{\|l} \hline \tan \theta=\frac{11.5}{49.6} \\ \theta=13.1^{\circ} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { M1 } \\ \text { A1 } \end{array}$	
	Section B		
10	As attached		
11ai)	Median mark = 73	A1	
aii)	$\begin{aligned} & \text { Interquartile range } \\ & =81-61 \\ & =20 \\ & \hline \end{aligned}$	A1	
bi)	$\begin{aligned} & \text { Mean mark } \\ & =\frac{43(45)+100(55)+85(65)+97(75)+46(85)+29(95)}{400} \\ & =67.25 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	
bii)	Standard Deviation $\begin{aligned} & =\sqrt{\frac{43(45)^{2}+100(55)^{2}+\mathrm{K}+46(85)^{2}+29(95)^{2}}{400}-(67.25)^{2}} \\ & =14.1 \mathrm{marks} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \hline \end{aligned}$	
biii)	ABC school has a higher mean score of 73 that of XYZ school of 67.25 marks. Since the standard deviation of ABC school's test score is less than that of XYZ school's test score, it would mean that ABC school has less variation than XYZ school in terms of the Mathematics test score.	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	
12ai)	$\begin{aligned} & \angle B C T \\ & =\frac{1}{2}\left(72^{\circ}\right) \quad \text { (angle at centre }=2 \text { angles at circumference) } \\ & =36^{\circ} \end{aligned}$	A1	If reasons are not stated, 1 mark will be deducted from question 12(a).
aii)	$\begin{aligned} & \angle B C T \\ & =360^{\circ}-72^{\circ}-38^{\circ}-90^{\circ} \quad(\text { tan } \perp \mathrm{rad}),(\angle \text { sum of quad }) \\ & =160^{\circ} \end{aligned}$	A1	

aiii)	$\angle O T C$ $=180^{\circ}-36^{\circ}-38^{\circ}-90^{\circ} \quad(\tan \perp \mathrm{rad}),(\angle \mathrm{sum}$ of $\Delta)$ $=16^{\circ}$	B2			
bi)	Length of $B T$ $=9\left(\frac{2 \pi}{5}\right)$ $=11.3 \mathrm{~cm}$$\quad$ (3s.f.)			\quad	M1
:---					
bii)					
Area of sector $O B T$ $=\frac{1}{2}(9)^{2}\left(\frac{2 \pi}{5}\right)$ $=50.9 \mathrm{~cm}^{2}$ (3s.f.)					
Accept workings in degree					

11(aia)	Angle $\mathrm{BFD}=124^{\circ}$(angle at centre $=2 \mathrm{x}$ angle at circum.) Accept: ext angle $=$ sum of 2 opp. int. angle 11(aib)Angle $\mathrm{FBD}=28^{\circ}$ (rt. angle triangle in semicircle) Angle $\mathrm{BDC}=28^{\circ}$ (alt. angles) Angle $\mathrm{DBC}=180-118-28=34^{\circ}$	[M1]
11(bi)	Bearing of B from C $=070^{\circ}$	[A1]
11(bii)	Bearing of A from B $=360-110-26=224^{\circ}$ or $180^{\circ}+44^{\circ}$	[A1]
11(biii	Angle $\mathrm{CAB}=44^{\circ}$ 78 $\sin 44^{\circ}=\frac{A C}{\sin 26^{\circ}}$ $A C=\frac{78 \sin 26^{\circ}}{\sin 44^{\circ}}$ $=49.2$	[M1]
[M1]	[A1]	

