9. (a) F, B and D are points on the circle centre O.

9 In the diagram *AOB* is the diameter of a circle with centre *O*. AOB = 16 cm and $\angle ADC = x^{\circ}$.

(a)	Find,	nd, in terms of x,		
	(i)	reflex $\angle AOC$,	[1]	
	(ii)	$\angle AEC$, and	[1]	
	(iii)	$\angle ABC$. Give reasons for your answers.	[1]	
(b)	If $\angle C$	OB = 0.75 radians, calculate		
	(i)	the area of ΔBCO ,	[2]	
	(ii)	the area of the shaded segment.	[3]	

12 In the diagram, *TA* is a tangent to the circle whose centre is *O*. $\angle TOB = 72^{\circ}$ and $\angle TAB = 38^{\circ}$.

Stating the reasons clearly, calculate **(a)** [1] (i) $\angle BCT$, [1] **(ii)** $\angle OBA$, [2] $\angle OTC$. (iii) **(b)** If the radius of the circle is 9 cm, calculate the length of arc *BT*, (i) [2] the area of the minor sector OBT. [2] (ii)

End of Paper

11 (a)

(b)

The diagram shows a circle *ABCD*. *AD* is a diameter of the circle and *BF* is parallel to *CD*. *F* is the centre of the circle. Angle $ABE = 62^{\circ}$ and angle $BCD = 118^{\circ}$.

Calcu	late	
(i)	the angle <i>BFD</i> ,	[1]

(ii) the angle *DBC*, stating your reasons clearly. [2]

A, *B* and *C* are on level horizontal ground. BC = 78 m, $A\hat{C}B = 110^{\circ}$ and $A\hat{B}C = 26^{\circ}$. *C* is due north of *A*. Calculate

- (i) the bearing of B from C. [1]
- (ii) the bearing of A from B. [1]
- (iii) the length of AC. [3]

End of Paper

		ii) <i>x</i> = 0.5	B1
	b	i) $p = 2, q = 31.2$	B1, B1
			B1 – plotting the right points and labelling B1 – smooth curve.
		iii) <i>x</i> = 1.844 (Accept 1.65 to 2.03)	B1
9	а	$\angle BOD = 360 - x$	M1
		i) $\angle BFD = \frac{360 - x}{2} \text{ or } 180 - \frac{x}{2}$	A1
		(BCD = 360 - 90 - 90 - (360 - x))	M1
		=x-180	A1
	b	$BC^2 = 12^2 + 10^2 - 2(12)(10)\cos 1.2$	M1
		i) $BC^2 = 157.034$	M1
		BC = 12.5 cm	۸1
		ii) $/ROC - 2$ Arad	R1
		$\frac{1}{2} \sum DOC = 2.47 u u$	
10	а	i) 3B1, they have a higher median	B1
		ii) IQR = 72 - 48 = 24	B1
		iii) 3B2, both classes have same IQR and range. in 3B1 median is higher, more people get the higher marks.	B1, or any other acceptable reasons.
	b	i) Monday Tuesday	
		03 🖌 late	B1 for Monday $pot late = 0.7$
		0.5 Inte	1001ate = 0.7
		0.3 late 0.7 not late 0.7 late	B1 for Tuesday all correct values.
		0.7 not late	
		ii) (a) 0.3 x 0.3 = 0.09	B1
		(b) $0.3 \ge 0.7 \pm 0.7 \ge 0.3$	M1

<u>Answer</u>

1	(a)		8.1×10^{13} m	9	(a)	(i)	2 <i>x</i>
2	(b) (a)		2.11×10^5				$(\angle$ at centre = twice \angle at circumference)
2	(a) (b)		28 hottles			(ii)	x
3	(b) (a)	(i) (ii)	(2x+3)(x-5) (3a-1)(b-5)			(iii)	(\angle s in the same segment) 180 - x (opp. \angle s of cyclic quad.)
	(b)		x = 5.52 or $x = -2.27$		(b)	(i)	21.8 cm^2
	(c)		$\frac{9y^{10}}{2}$			(ii)	2.19 cm^2
			$5x^3$	10	(a)	(i)	26 students
4	(a)		-2			(ii)	38 marks
	(b)		y = -2x + 10			(iii)	25 marks
	(c)		С(8,-6)			(iv)	The students did better in
	(d)		D(0,10)				is higher.
	(e)		17.9 units				or
5	(a)		14				The students did better in English
	(b) (c)		P = 2S + 2 $y = 96$				as the interquartile range is smaller hence results are more
	(•)		n = 15				consistent
6	(a)	(i)	$P\hat{Q}R = 49^{\circ}$		(b)	(ii)	$\frac{31}{66}$
		(ii)	68.5 km			(i)	00
		(iii)	3140 km^2				
	(b)		$\theta = 50.5^{\circ}$				4 Girl
7	(a)		h = 17.2 cm				11 0
	(b)		<i>m</i> = 1431 g		5	,	Girl 🖌
	(c)		The larger jar gives the better value.		12		$\frac{7}{11}$ Boy
8	(a)		p = -1		<		5 Cirl
	(c)	(i)	<i>x</i> = - 0.3 & - 5.7		7		$\frac{1}{11}$
		(ii)	- 1.02 (± 0.1)		12		Воу 🧹
	(d)	<i>x</i> = -	1.75 & - 6.3				$\frac{6}{11}$ Boy

9a)	$AB^{2} = OB^{2} + OA^{2} - 2(OB)(OA)\cos(90^{\circ} + 24^{\circ})$		
	$AB = \sqrt{40^2 + 49.6^2 - 2(40)(49.6)\cos 114^\circ}$	M1	
	= 75.3m (3s f)	A1	
b)	$\sin / OBA \sin 114^{\circ}$	M1	
0)	$\frac{\sin 200A}{40.6} = \frac{\sin 114}{75.22}$		
	$49.0 75.55 (1d \ n)$	A1	
c)	Bearing of <i>B</i> from <i>A</i>		
• • •	$= 114^{\circ} + 37.0^{\circ} - 90^{\circ}$		
	= 061 °	A1	
d)	$\tan \theta = \frac{11.5}{2}$	M1	
	49.6	A 1	
	$\theta = 13.1^{\circ}$	AI	
10	Section B		
10	As attached		
11ai)	Median mark = 73	A1	
aii)	Interquartile range	711	
uii)	= 81 - 61		
	=20	A1	
bi)	Mean mark		
,	43(45) + 100(55) + 85(65) + 97(75) + 46(85) + 29(95)	M1	
	400		
	= 67.25	A1	
bii)	Standard Deviation		
	$43(45)^{2} + 100(55)^{2} + K + 46(85)^{2} + 29(95)^{2}$ (67.25) ²		
	$=\sqrt{-(67.25)}$	MI	
	= 14.1 marks	A1	
biii)	ABC school has a higher mean score of 73 that of XYZ	B1	
, i	school of 67.25 marks.		
	Since the standard deviation of ABC school's test score is	B1	
	less than that of XYZ school's test score, it would mean		
	that ABC school has less variation than XYZ school in		
	terms of the Mathematics test score.		
1201)			If reasons are
12al)			not stated 1
	$=\frac{1}{-}(72^{\circ})$ (angle at centre = 2 angles at circumference)		mark will he
	2	A1	deducted from
	= 36°		question 12(a).
aii)	$\angle BCT$		
	$= 360^\circ - 72^\circ - 38^\circ - 90^\circ$ (tan \perp rad), (\angle sum of quad)		
	=160°	AI	

aiii)	$\angle OTC$		
	$= 180^{\circ} - 36^{\circ} - 38^{\circ} - 90^{\circ} \qquad (\tan \perp rad), \ (\angle \text{ sum of } \Delta)$		
	=16°	B2	
bi)	Length of <i>BT</i>		Accept
	$-9\left(\frac{2\pi}{2\pi}\right)$		workings in
	$- \left(5 \right)$	M1	degree
	=11.3cm (3s.f.)	A1	
bii)	Area of sector OBT		
	$=\frac{1}{2}(9)^2\left(\frac{2\pi}{5}\right)$	M1	
	$=50.9cm^2$ (3s.f.)	A1	

11(aia)	Angle BFD = 124° (angle at centre = 2x angle at circum.)	[A1]
	Accept: ext angle = sum of 2 opp. int. angle	
11(aib)	Angle FBD = 28° (rt. angle triangle in semicircle)	[M1]
	Angle BDC = 28° (alt. angles)	
	Angle $DBC = 180 - 118 - 28 = 34^{\circ}$	[A1]
11(bi)	Bearing of B from $C = 070^{\circ}$	[A1]
11(bii)	Bearing of A from $B = 360 - 110 - 26 = 224^{\circ}$ or $180^{\circ} + 44^{\circ}$	[A1]
11(biii	Angle $CAB = 44^{\circ}$	[M1]
	78 AC	
	$\frac{1}{\sin 44^{\circ}} = \frac{1}{\sin 26^{\circ}}$	[M1]
	$78\sin 26^{\circ}$	
	$AC = \frac{1}{\sin 44^{\circ}}$	
	= 49.2	[A1]
	17.2	