1. [ACJC 18 CA2]

One root of the equation $w^{3}-9 w^{2}+20 w-37-b^{2}=0$, where b is real and positive, is $w=1+b i$.
By expressing $w^{3}-9 w^{2}+20 w-37-b^{2}$ as a product of a linear factor and a quadratic factor, find the value of b and the other roots.
2. [AJC 18 MYE$]$

The complex numbers p and q satisfy the following simultaneous equations

$$
p+(2+i) q=5+i \quad \text { and } \quad i p-2 q=4
$$

Find p and q in the form $x+y i$, where x and y are real.
3. [SAJC 18 MYE]

The complex number z is given by $z=r e^{i \theta}$, where $r>0$ and $0 \leq \theta \leq \pi$, and the complex number $w=\left(\frac{\sqrt{3}}{2}-\frac{1}{2} i\right) z$.
(a) Find $|w|$ in terms of r and $\arg w$ in terms of θ, giving both your answers in exact form.
(b) Given that $\frac{z^{6}}{w^{*}}$ is purely imaginary, find the three smallest values of θ in exact form, leaving your answers in terms of π.

Answers

1. $b=\sqrt{5}, w=7,1 \pm i \sqrt{5}$.
2. $p=6-6 i, q=1+3 i$.
3. (a) $|w|=r, \arg w=-\frac{\pi}{6}+\theta$.
(b) $\frac{2 \pi}{21}, \frac{5 \pi}{21}, \frac{8 \pi}{21}$.
