1. [IJC Prelims 17]

The function f is given by $f: x \mapsto 3+\frac{1}{x-2}$ for $x \in \mathbb{R}, x>2$.
(a) Find $f^{-1}(x)$ and state the domain of f^{-1}.
(b) Explain why the composite function f^{2} exists.
(c) Find the value of x for which $f^{2}(x)=x$. Explain why this value of x satisfies the equation $f(x)=f^{-1}(x)$.
2. [TPJC Prelims 17 (modified)]

The function f is defined by

$$
f: x \mapsto(x-k)^{2}, \quad x<k \text { where } k>5 .
$$

(a) Find $f^{-1}(x)$ and state the domain of f^{-1}.

The diagram shows the curve with equation $y=g(x)$ with domain $D_{g}=[-2,2]$. The curve crosses the x-axis at $x=-2, x=-1, x=1$ and $x=2$ and has turning points at $(-1.5,-1),(0,4)$ and $(1.5,-1)$.
(b) Explain why the composite function $f g$ exists.
(c) Find, in terms of k,
i. the value of $f g(-1)$,
ii. the range of $f g$.

3. [TJC Prelims 18]

The function f is defined by $f: x \mapsto\left(x^{2}-4\right)^{2}-24, x \in \mathbb{R}$.
(a) Sketch the graph of $y=f(x)$, indicating clearly all intercepts and stationary points.
(b) Explain why f^{-1} does not exist.
(c) The functions f_{1} and f_{2} are defined by

$$
\begin{aligned}
& f_{1}: x \mapsto\left(x^{2}-4\right)^{2}-24, x \in \mathbb{R}, x \leq k, \\
& f_{1}: x \mapsto\left(x^{2}-4\right)^{2}-24, x \in \mathbb{R}, x>k,
\end{aligned}
$$

where k is a real number. State the range of values of k for which f_{1}^{-1} exists and f_{2}^{-1} does not exist.
(d) Using the largest possible value of k found in (c), find f_{1}^{-1} in a similar form.
4. The functions f and g are defined by

$$
\begin{array}{ll}
f: x \mapsto x^{2}+2 x-3 & \text { for } x \in \mathbb{R}, x<b, \\
g: x \mapsto \frac{3 x+2}{x-3}, & \text { for } x \in \mathbb{R}, x \neq 3 .
\end{array}
$$

(a) Determine, with reason, whether f^{-1} exists when

$$
\begin{aligned}
& \text { i. } b=-2 \text {, } \\
& \text { ii. } b=2 .
\end{aligned}
$$

(b) For the value of b in (a) such that f^{-1} exists,
i. solve $f(x)=f^{-1}(x)$ exactly.
ii. define f^{-1}, stating clearly its domain.
(c) Determine, with reason, whether $g f$ exists when $b=0$.
(d) Find an expression for $g^{-1}(x)$.

Hence determine
i. $g^{2}(x)$.
ii. $g^{2017}(8)$.

5. [CJC Prelims 18]

The function f is defined by

$$
f: x \mapsto x^{2}+4 x-5, \quad \text { for } x \leq k, k \in \mathbb{R}
$$

(a) Find the largest exact value of k such that f^{-1} exists. For this value of k, define f^{-1} in a similar form.

The function g is defined by

$$
g: x \mapsto \begin{cases}4-x^{2}, & \text { for } 0<x \leq 2 \\ 2 x-4, & \text { for } 2<x \leq 4\end{cases}
$$

and that $g(x)=g(x+4)$ for all real values of x.
(b) Sketch the graph of $y=g(x)$ for $-1<x \leq 7$.
(c) Using the results in part (a) and (b), explain why the composite function $f^{-1} g$ exists and find the exact value of $f^{-1} g(6)$.

6. [SRJC Prelims 18]

(a) The function f is defined by

$$
f: x \mapsto x^{2}-2 x-8, \quad x \in \mathbb{R}, x>k
$$

i. State the least value of k such that f^{-1} exists and find f^{-1} in a similar form.
ii. Using the value of k found in (i), state the set of values of x such that $f^{-1} f(x)=f f^{-1}(x)$.
(b) The functions g and h are defined by

$$
\begin{array}{ll}
g: x \mapsto \sqrt{x+41}+a, & x \geq-41, a \in \mathbb{R}, \\
h: x \mapsto x^{2}+10 x-16, & x \in \mathbb{R}, x<-7 .
\end{array}
$$

i. Find the exact value of x for which $h^{-1}(x)=h(x)$.
ii. Explain clearly why the composite function $g h$ exists.
iii. Find $g h$ in the form $b x+c$, where B is a real constant and c is in terms of a. Explain your answers clearly.
iv. State the exact range of $g h$ in terms of a.

7. [ACJC Prelims 17 (modified)]

The function f is defined by

$$
f: x \mapsto \sin \left(x+\frac{1}{4}\right) \pi-\sin \left(x-\frac{3}{4}\right) \pi, \quad x \in \mathbb{R}, a \leq x \leq 1 .
$$

The function g is defined by

$$
g: x \mapsto \frac{2 x}{1-x}, \quad x \in \mathbb{R}, x \geq \frac{13}{5} .
$$

(a) Express $f(x)$ as a single trigonometric function in the form $b \cos (x-c) \pi$. Hence state the range of f and sketch the curve when $a=-1$, labelling the exact coordinates of the points where the curve crosses the x - and y-axes.
(b) State the least value of a such that f^{-1} exists, and define f^{-1} in similar form.
(c) When $a=-\frac{13}{4}$, show that $f g$ exists. Find the range of $f g$.

8. [AJC 17 Prelims]

(a) The function f is defined by

$$
f: x \mapsto \frac{\mathrm{e}^{x}-1}{\mathrm{e}-1} \quad \text { for } x \in \mathbb{R} .
$$

Sketch the graph of $y=f(x)$ and state the range of f.
(b) Another function h is defined by

$$
h: x \mapsto \begin{cases}(x-1)^{2}+1 & \text { for } x \leq 1 \\ 1-\frac{|1-x|}{2} & \text { for } 1<x \leq 4\end{cases}
$$

Sketch the graph of $y=h(x)$ for $x \leq 4$ and explain why the composite function $f^{-1} h$ exists. Hence find the exact value of $\left(f^{-1} h\right)^{-1}(3)$.

9. [DHS Prelims 17 (modified)]

(a) Express $\sin x+\sqrt{3} \cos x$ as $R \sin (x+\alpha)$, where $R>0$ and α is an acute angle.

The function f is defined by

$$
f: x \mapsto \sin x+\sqrt{3} \cos x, \quad x \in \mathbb{R},-\frac{\pi}{3} \leq x \leq \frac{\pi}{6} .
$$

(b) Sketch the graph of $y=f(x)$.
(c) Find $f^{-1}(x)$, stating the domain of f^{-1}. On the same diagram as in part (b), sketch the graph of $y=f^{-1}(x)$, indicating the equation of the line of symmetry.
(d) ${ }^{* *}$ Using integration, find the area of the region bounded by the graph of f^{-1} and the axes.

The function g is defined by

$$
g: x \mapsto|\ln (x+2)|, \quad \text { for } x \in \mathbb{R}, x>-2 .
$$

(e) Show that the composite function $g f^{-1}$ exists, and find the range of $g f^{-1}$.
10. [NJC Prelims 13]

The function f is defined by

$$
f: x \mapsto \frac{c x-d}{d x-c}, \quad \text { for } x \in \mathbb{R}, x \neq \frac{c}{d}
$$

where c and d are fixed constants and $c>d>0$.
(a) Sketch the graph of $y=f(x)$, indicating the axial intercepts and the equations of any asymptotes.
(b) Find $f^{-1}(x)$ and $f^{2}(x)$, stating clearly their domains. Hence, state the range of f^{2}.
(c) On the same diagram in (a), sketch the graph of $y=f^{2}(x)$. Label your graph clearly.
(d) State the value of $f^{2013}(1)$.

Answers

1. (a) $f^{-1}(x)=2+\frac{1}{x-3}, x \in \mathbb{R}, x>3$.
(c) $x=3.62$.
2. (a) $f^{-1}(x)=-\sqrt{x}+k . D_{f^{-1}}=(0, \infty)$.
(b) $R_{g}=[-1,4] \subseteq(-\infty, k)=D_{f}$ since $k>5$. Hence $f g$ exists.
(c) i. k^{2}.
ii. $\left[(4-k)^{2},(1+k)^{2}\right]$.
3. (b) The line $y=0$ cuts the graph of $y=f(x)$ more than once. Hence f is not one-one and f^{-1} does not exist.
(c) $k \leq-2$.
(d) $f_{1}^{-1}: x \mapsto-\sqrt{4+\sqrt{x+24}}, x \in \mathbb{R}, x \geq-24$.
4. (a) i. Yes. All horizontal lines $y=k, k \in \mathbb{R}$ cuts the curve $y=f(x)$ at most once. Hence f is a one-one function and f^{-1} exists.
ii. No. The horizontal line $y=0$ cuts the curve $y=f(x)$ more than once. Hence f is not a one-one function and f^{-1} does not exist.
(b) i. $\frac{-1-\sqrt{13}}{2}$.
ii. $f^{-1}: x \mapsto-1-\sqrt{x+4}, x \in \mathbb{R}, x>-3$.
(c) $R_{f}=(-3, \infty) \nsubseteq D_{g}=(-\infty, 3) \cup(3, \infty)$.
(d) $g^{-1}(x)=\frac{3 x+2}{x-3}$.
i. x.
ii. $\frac{26}{5}$.
5. (a) $f^{-1}: x \mapsto-2-\sqrt{x+9}$, for $x \geq-9$.
(c) $[0,4]=R_{g} \subseteq D_{f^{-1}}=[-9, \infty)$.
$f^{-1} g(6)=-5$.
6. (a) i. Least $k=1$.

$$
f^{-1}: x \mapsto 1+\sqrt{x+9}, x \in \mathbb{R}, x>-9 .
$$

ii. $(1, \infty)$.
(b) i. $-\frac{9}{2}-\frac{\sqrt{145}}{2}$.
ii. $(-37, \infty)=R_{h} \subseteq D_{g}=[-41, \infty)$.
iii. $-x+a-5$.
iv. $(a+2, \infty)$.
7. (a) $b=2, c=\frac{1}{4}$.
$R_{f}=[-2,2],\left(-\frac{1}{4}, 0\right),\left(\frac{3}{4}, 0\right),(0, \sqrt{2})$.
(b) $a=\frac{1}{4}, f^{-1}: x \mapsto \frac{1}{\pi} \cos ^{-1} \frac{x}{2}+\frac{1}{4}, x \in[-\sqrt{2}, 2]$.
(c) $R_{f g}=[-2, \sqrt{2})$.
8. $1-\sqrt{\mathrm{e}^{2}+\mathrm{e}}$.
9. (a) $2 \sin \left(x+\frac{\pi}{3}\right)$.
(c) $f^{-1}(x)=-\frac{\pi}{3}+\sin ^{-1}\left(\frac{x}{2}\right) . \quad D_{f^{-1}}=R_{f}=[0,2]$.
(d) 1 .
(e) $R_{g f^{-1}}=[0,0.926]$.
10. (b) $f^{-1}(x)=\frac{c x-d}{d x-c}, D_{f^{-1}}=\left(-\infty, \frac{c}{d}\right) \cup\left(\frac{c}{d}, \infty\right)$. $f^{2}(x)=x, D_{f^{2}}=\left(-\infty, \frac{c}{d}\right) \cup\left(\frac{c}{d}, \infty\right)$.
(c) $f^{2013}(1)=-1$.

