- 1 Given that $f(x) = tan\left(\frac{\pi}{4} x\right)$, find f(0), f'(0) and f''(0). Hence write down the first three non-zero terms in the Maclaurin series for f(x). [4]
- 2 The function f(x) is a quadratic polynomial such that f(4) = 3 and $\int_{0}^{4} f(x) dx = \frac{20}{3}$. If the curve with equation y = f(x) is transformed by a translation of 1 unit in the negative *x*-direction, the new curve has a *y*-intercept at $\frac{3}{2}$. Find f(x). [4]
- 3 The diagram below shows the curve with equation y = f(x). It has turning points A(a, 5) and B(1,9) and asymptotes with equations y = 2, x = m and $y = \frac{1}{3}x + 7$. The curve also crosses the axes at the points C(c, 0) and D(0, d). The gradient of the curve at D is -3.

Sketch, on separate diagrams, the following curves.

(a)
$$y = \frac{1}{f(x)}$$
 [3]
(b) $y = f'(x)$ [3]

Label the coordinates of the points corresponding to *A*, *B*, *C*, and *D* (where applicable), the points where the curve crosses the axes, and the equations of any asymptotes.

© NJC 2019

- A curve C has equation $y = e^x$. 4
 - Find the exact volume of revolution when the region bounded by C, the line y = 3 and (a) the y-axis is rotated completely about the y-axis. [5]
 - Describe a pair of transformations which transforms the curve with equation $y = e^{1+2x}$ on **(b)** to the curve *C*. [2]
- 5 A curve C has parametric equations
 - $x = \sin \theta$, $y = \sin 2\theta$, for $0 \le \theta \le \pi$.
 - (i) Sketch C, labelling the coordinates of any axial intercepts. [2] [5]
 - Find the exact area of the region bounded by C. (ii)
- 6 A vessel is formed by removing a smaller cone of radius 5 m from a bigger cone whose semivertical angle is α , where tan $\alpha = 0.5$. Water flows out of the vessel at a rate of $k\sqrt{h}$ m³ per minute, where k is a positive constant. At time t minutes, the height of the water surface from the hole is h m (see diagram).

- Show that the volume of the water V, in m³, is given by $\frac{1}{12}\pi \left[(h+10)^3 1000 \right]$. (i) [4]
- **(ii)** Find the rate of change of *h*, in terms of *k*, when $V = 120\pi$.
- 7 Determine the constants A and B such that

$$\frac{1}{(3x^2+1)(x^2+3)} = \frac{A}{3x^2+1} + \frac{B}{x^2+3}.$$

Hence, find the exact value of *p*, where p > -1, such that

$$\int_{0}^{1} \frac{8}{(3x^{2}+1)(x^{2}+3)} \, \mathrm{d}x = \int_{-1}^{p} \left| \frac{\sqrt{3}}{9} x \right| \, \mathrm{d}x \, ,$$

giving your answer in terms of π .

8 A curve C has equation
$$\ln(y+1) = 1 + \tan^{-1} x$$
, where $y > -1$.

- (i) Explain why C has no tangent parallel to the y-axis. [2]
- Without using a calculator, find the equation of the normal to C at the point where it (ii) crosses the y-axis. [3]
- (iii) Determine the range of values of x for which C is concave downwards. [3]

© NJC 2019

[Turn over

[4]

[8]

www.KiasuExamPaper.com 182

- 9 Non-zero and non-parallel vectors **a**, **b** and **c** are such that $\mathbf{b} \times 3\mathbf{c} = \mathbf{c} \times \mathbf{a}$.
 - (i) Determine the relationship between c and $\mathbf{a} + 3\mathbf{b}$, justifying your answer. [2]

It is given that \mathbf{a} and $3\mathbf{b}$ are unit vectors and that the angle between \mathbf{a} and \mathbf{b} is 60°.

- (ii) Evaluate $|\mathbf{a} + 3\mathbf{b}|$. [3]
- (iii) Given further that $\mathbf{a} + 3\mathbf{b}$ makes an angle of 60°, 120° and 135° with the positive x-, yand z-axes respectively, show that **c** is parallel to $\mathbf{i} - \mathbf{j} - \sqrt{2}\mathbf{k}$.

10 Functions f and g are defined by

$$f: x \mapsto 2 - x + \frac{8}{x+2}, \quad x \in \mathbb{R}, x \neq -2, x > k,$$
$$g: x \mapsto x^2 - 6x + a, \quad x \in \mathbb{R}, x > 0,$$

where a is a constant.

(i) State the least value of k for which the function f^{-1} exists. [1]

Using this value of *k*,

- (ii) Without finding f⁻¹, sketch, on the same diagram, the graphs of y = f(x), y = f⁻¹(x) and y = f⁻¹f(x), showing clearly their geometrical relationship. State the equations of any asymptotes. [4]
- (iii) Find the smallest integer value of a for which the composite function fg exists and use this value to state the range of fg. [4]
- (iv) Given instead that a = 10, solve the inequality $fg(x) + g(x) \le 4$ algebraically. [5]
- 11 The plane *p* passes through the points *A*, *B* and *C* with coordinates (-3, -4, 11), (1, -2, 0) and (-5, 2, -1) respectively. The point *M* has position vector given by $\mathbf{m} = 3\mathbf{i} + 6\mathbf{j} + 15\mathbf{k}$.

(i)	Show that \overrightarrow{AM} is perpendicular to <i>p</i> .	[3]
(ii)	Find the coordinates of N which is the mirror image of M in p .	[2]
(iii)	Find a vector equation of the line which is a reflection of the line MB in p .	[2]
The plane q has equation $11x+6y-z-4+k(-x-3y+z-4)=0$ for some constant k.		
(iv)	Given that q contains M , find a cartesian equation of q .	[2]

(v) By finding the line of intersection between p and q, or otherwise, find a cartesian equation of the plane which is a reflection of q in p.

© NJC 2019

12 It is given that $f(x) = 9 - \frac{x^2}{6}$. The diagram below shows a vertical cross section of a building. The cross section of the roof of the building can be modelled by the curve y = f(x), where $-6 \le x \le 6$ and x is in metres. The ground level is represented by the x-axis.

The cross section of the living space under the roof can be modelled by a rectangle *ABCD* with points D(-a, 0) and A(a, 0), where $0 < a \le 6$.

The P/A ratio is a measure of the thermal insulation of a space. The lower the P/A ratio, the smaller the amount of insulation is required, thus saving costs. The P/A ratio can be defined by the function $I(a) = \frac{P(a)}{A(a)}$ where P(a) is the perimeter and A(a) is the area of the rectangle

ABCD.

(i) Show that
$$I(a) = \frac{12}{54 - a^2} + \frac{1}{a}$$
. [3]

- (ii) Given that $a = a_1$ is the value of a which gives the minimum value of I, show that a_1 satisfies the equation $a^2 + \sqrt{24}a^{\frac{3}{2}} 54 = 0$. [3]
- (iii) Find a_1 , correct to 3 decimal places, and show that it minimises *I*. [2]

The developer would prefer the living space *ABCD* to be at least 80% of the area *ABECD*, which is currently not satisfied. It is suggested to replace the curve y = f(x) to model the roof with part of the curve in part (iv).

- (iv) Sketch the curve with equation $(2y-19)^2 2x^2 = 1$ for $y \le 9$ for all values of x, stating the equations of any asymptotes. [2]
- (v) Based on the value of a_1 found in part (iii), determine if the developer would accept the suggestion. [2]

© NJC 2019