	2017 N 13C 3C2 11cmin 7730
Qn	
5(i)	Number of ways = $\frac{9!}{2!2!3!}$ = 15120
5(ii)	Number of ways = $\frac{7!}{3!}$ = 840
5(iii)	Number of ways = $\frac{5!}{2!} \cdot {}^{6}C_{3}$ = 1200
5(iv)	Let the event D be such that the D's are together, the event E be such that the E's are together and S be such that the S's are together. $n(D \cup E \cup S) = n(D) + n(E) + n(S) - n(D \cap E)$
	$-n(E \cap S) - n(D \cap S) + n(D \cap E \cap S)$
	$= \frac{8!}{2!3!} + \frac{7!}{2!2!} + \frac{8!}{2!3!} - \frac{6!}{2!} - \frac{6!}{2!} - \frac{7!}{3!} + 5!$ $= 6540$
	Number of ways = $n(D' \cap E' \cap S')$
	$= n(S) - n(D \cup E \cup S)$
	=15120-6540
	= 8580

	<u>2019 NYJC JC2 Prelim 9758</u>
Qn	
6(i)	Let X denotes the number of 1-year old flares that fail to fire successfully, out of the 100, $X \sim B(100, 0.005)$
	$P(X \le 2) = 0.985897 \approx 0.986$
6(ii)	Let Y denotes the number of boxes with a hundred 1-year old flares with at most 2 that fail to fire, out of 50 boxes, ie $Y \sim B(50, 0.985897)$
	$P(Y \le 48) = 0.156856 \approx 0.157$
6(iii)	Let T denotes the number of 10-year old flares that fire successfully, out of the 6, $T \sim B(6, 0.75)$
	(a) Required prob = $(1-0.970) \times P(T \ge 4)$ = $0.03 \times (1 - P(T \le 3))$
	= 0.0249 (b) P(at least 4 of the 7 flares fire successfully)
	$= 0.024917 + 0.970 \times P(T \ge 3)$
	$= 0.024917 + 0.970 \times (1 - P(T \le 2))$
	= 0.958
	KIASU ExamPaper Islandwide Delivery Whatsapp Only 88660031

	2019 NYJC JC2 Prelim 975
Qn	
7(i)	Let X be the rv denoting the amount of time taken by a cashier to deal with a randomly chosen customer, ie $X \sim N(150, 45^2)$.
	$P(X > 180) = 0.25249 \approx 0.252$
7(ii)	Assume that the time taken to deal with each customer is independent of the other, ie $X_1 + X_2 \sim N(2 \times 150, 2 \times 45^2)$
	$P(X_1 + X_2 < 200) = 0.058051 \approx 0.0581$
7(iii)	Let <i>Y</i> be the rv denoting the amount of time taken by a the second cashier
	to deal with a randomly chosen customer, ie $Y \sim N(150, 45^2)$.
	$X_1 + X_2 + X_3 + X_4 \sim N(4 \times 150, 4 \times 45^2)$
	and $Y_1 + Y_2 + Y_3 \sim N(3 \times 150, 3 \times 45^2)$
	$P(X_1 + X_2 + X_3 + X_4 < Y_1 + Y_2 + Y_3) = P(X_1 + X_2 + X_3 + X_4 - (Y_1 + Y_2 + Y_3) < 0)$
	Using $X_1 + X_2 + X_3 + X_4 - (Y_1 + Y_2 + Y_3) \sim N(150, 7 \times 45^2)$
	$P(X_1 + X_2 + X_3 + X_4 - (Y_1 + Y_2 + Y_3) < 0) = 0.10386 \approx 0.104$
	KIASU ExamPaper Islandwide Delivery Whatsapp Only 88660031

	2019 NYJC JC2 Prelim 9758
Qn	
8(i)	(i) <i>u</i> ♠
	12
	10 +
	8
	6
	4
	2
	30 40 50 60 70 80 90 X
8(ii)	Using GC, $r = 0.884$ for the model $u = ax + b$
	$u = ae^{bx} \Rightarrow \ln u = bx + \ln a$
	Using GC, $r = 0.906$ for the model $u = ae^{bx}$
	Since the value of r is closer to 1 for the 2^{nd} model, $u = ae^{bx}$ is a
	better model.
	$ \ln u = 0.013633x + 0.94964 $
	$u = e^{0.013633x + 0.94964}$
	$u = 2.58e^{0.0136x} = 2.6e^{0.014x}$
8(iii)	(7)
	$7 = 2.58e^{0.0136x} \Rightarrow x = \frac{\ln\left(\frac{7}{2.58}\right)}{0.0136} = 73.391 \approx 73$
	A patient with urea serum is 7 mmol per litre is approximately 73 years old. ExamPaper
	Since $r = 0.906$ is close to 1 and 7 is within the data range of urea serum,
	estimate is reliable.
8(iv)	The product moment correlation coefficient in part (ii) will not be
(a)	changed if the units for the urea serum is given in mmol per decilitre.
8(iv)	$u = 0.258e^{0.0136x}$
(b)	

	2019 N 13C 3C2 11enin 9730
Qn	
9(i)	$P(X=2) = \frac{18}{18} \frac{2}{17} \frac{15}{16} \frac{3!}{2!}$ 45
	$= \frac{45}{136}$ $P(X=0) = \frac{18}{18} \frac{15}{17} \frac{12}{16}$
	$= \frac{45}{68}$ 18 2 1
	$P(X = 3) = \frac{18}{18} \frac{2}{17} \frac{1}{16}$ $= \frac{1}{136}$
	136
9(ii)	$E(X) = \frac{93}{136}$
	$E(X^{2}) = 0 \times \frac{45}{68} + 2^{2} \times \frac{45}{136} + 3^{2} \times \frac{1}{136} = \frac{189}{136}$
	$Var(X) = \frac{189}{136} - \left(\frac{93}{136}\right)^2$
	≈ 0.922
9(iii)	Since $n = 40$ is large, by Central Limit Theorem, $\overline{X} \sim N\left(\frac{93}{136}, \frac{0.922}{136}\right) = \text{per proximately}$
	$P(\overline{X} > 1) = 0.0186$

	2019 NYJC JC2 Prelim 9758
Qn	
9(iv)	Expected winnings = $-\frac{45}{68}a + \frac{45}{136}(a+10) + \frac{1}{136}(a+10)$
	$-\frac{11}{34}a + \frac{115}{34} > 0$
	$a < \frac{115}{11}$
	$a < 10.45$ The possible amounts will be $1 \le a \le 10$ and $a \in \mathbb{Z}$.
	The possible amounts will be 124210 and 4 622.
	ExamPaper Islandwide Delivery Whatsapp Only 88660031

	<u>2019 NYJC JC2 Prelim 975</u>
Qn	
10(i)	Let X be the thickness of the coating on a randomly chosen computer device. Let μ be the mean thickness of the coating of a computer device.
	Assume that the standard deviation of the coating of a computer device remains unchanged.
	To test: $H_0: \mu = 100$ $H_1: \mu \neq 100$
	Level of Significance: 5%
	Under H_0 , since sample size $n = 50$ is large, by Central Limit Theorem,
	$Z = \frac{\overline{X} - 100}{10 / \sqrt{50}} \sim N(0, 1)$ approx.
	Reject H_0 if $p-value \le 0.05$.
	Calculations: $\bar{x} = 103.4$
	p-value = 0.0162
	Conclusion: Since $p-value < 0.05$, we reject H_0 and conclude that
	there is significant evidence at 5% level of significance that the process is not in control.
10(ii)	Reject H_0 is $ z_{calc} \ge 1.960$
	For H_0 to be rejected $ \frac{ \overline{x} - 100 }{10/\sqrt{50}} $ ExamPaper ExamPaper Only 88660031
	$\Rightarrow \overline{x} \le 100 - 1.95996 \left(\frac{10}{\sqrt{50}}\right) \text{ or } \overline{x} \ge 100 + 1.95996 \left(\frac{10}{\sqrt{50}}\right)$
	$\Rightarrow \overline{x} \le 97.228 \text{ or } \overline{x} \ge 102.772$
	Thus the required range of values of \overline{x} is $0 < \overline{x} \le 97.2$ or $\overline{x} \ge 102.8$.

	<u>2019 NYJC JC2 Prelim 9758</u>
Qn	
10(iii)	$\overline{y} = \frac{4164}{40} = 104.1$
	$\Sigma(y-100) = 4164 - 4000 = 164$
	$s^{2} = \frac{1}{39} \left[\Sigma (y - 100)^{2} - \frac{\left(\Sigma (y - 100)^{2}\right)}{40} \right]$
	$=\frac{1}{39}\left[9447-\frac{164^2}{40}\right]$
	$=\frac{43873}{195}=224.9897$
10(iv)	The standard deviation may have changed due to the wear out of mechanical parts as well.
10(v)	To test: $H_0: \mu = 100$ $H_1: \mu \neq 100$
	Level of Significance: 4%
	Under H_0 , since sample size $n = 40$ is large, by Central Limit Theorem,
	$Z = \frac{\overline{Y} - 100}{S / \sqrt{40}} \sim N(0, 1) \text{ approx.}$
	Reject H_0 if p -value ≤ 0.04 . Calculations: $\overline{x} \approx 104.1$, $x^2 = 224.9897$ Islandwide Delivery Whatsapp Only 88660031 p -value $= 0.0839$
	Conclusion: Since $p-value > 0.04$, we do not reject H_0 and conclude
	that there is insignificant evidence at 4% level of significance that the process is not in control.