Qn	
5(i)	$\text { Number of ways }=\frac{9!}{2!2!3!}=15120$
5(ii)	Number of ways $=\frac{7!}{3!}=840$
5(iii)	$\begin{aligned} \text { Number of ways } & =\frac{5!}{2!} \cdot{ }^{6} C_{3} \\ & =1200 \end{aligned}$
5(iv)	Let the event D be such that the D's are together, the event E be such that the E's are together and S be such that the S 's are together. $\begin{aligned} n(D \cup E \cup S)= & n(D)+n(E)+n(S)-n(D \cap E) \\ & -n(E \cap S)-n(D \cap S)+n(D \cap E \cap S) \\ = & \frac{8!}{2!3!}+\frac{7!}{2!2!}+\frac{8!}{2!3!}-\frac{6!}{2!}-\frac{6!}{2!}-\frac{7!}{3!}+5! \\ = & 6540 \\ \text { Number of ways }= & n\left(D^{\prime} \cap E^{\prime} \cap S^{\prime}\right) \\ = & n(S)-n(D \cup E \cup S) \\ = & 15120-6540 \\ = & 8580 \end{aligned}$

2019 NYJC JC2 Prelim 9758/2 Solution

Qn	
6(i)	Let X denotes the number of 1 -year old flares that fail to fire successfully, out of the $100, X \sim \mathrm{~B}(100,0.005)$ $\mathrm{P}(X \leq 2)=0.985897 \approx 0.986$
6(ii)	Let Y denotes the number of boxes with a hundred 1-year old flares with at most 2 that fail to fire, out of 50 boxes, ie $Y \sim \mathrm{~B}(50,0.985897)$ $\mathrm{P}(Y \leq 48)=0.156856 \approx 0.157$
6(iii)	Let T denotes the number of 10 -year old flares that fire successfully, out of the $6, T \sim \mathrm{~B}(6,0.75)$ (a) Required prob $=(1-0.970) \times \mathrm{P}(T \geq 4)$ $\begin{aligned} & =0.03 \times(1-P(T \leq 3)) \\ & =0.0249 \end{aligned}$ (b) $\quad \mathrm{P}$ (at least 4 of the 7 flares fire successfully) $\begin{aligned} & =0.024917+0.970 \times \mathrm{P}(T \geq 3) \\ & =0.024917+0.970 \times(1-\mathrm{P}(T \leq 2)) \\ & =0.958 \end{aligned}$

Qn	
7(i)	Let X be the rv denoting the amount of time taken by a cashier to deal with a randomly chosen customer, ie $X \sim \mathrm{~N}\left(150,45^{2}\right)$. $\mathrm{P}(X>180)=0.25249 \approx 0.252$
7(ii)	Assume that the time taken to deal with each customer is independent of the other, ie $X_{1}+X_{2} \sim \mathrm{~N}\left(2 \times 150,2 \times 45^{2}\right)$ $\mathrm{P}\left(X_{1}+X_{2}<200\right)=0.058051 \approx 0.0581$
7(iii)	Let Y be the rv denoting the amount of time taken by a the second cashier to deal with a randomly chosen customer, ie $Y \sim \mathrm{~N}\left(150,45^{2}\right)$. $\begin{aligned} & \quad X_{1}+X_{2}+X_{3}+X_{4} \sim \mathrm{~N}\left(4 \times 150,4 \times 45^{2}\right) \\ & \text { and } Y_{1}+Y_{2}+Y_{3} \sim \mathrm{~N}\left(3 \times 150,3 \times 45^{2}\right) \end{aligned}$ $\mathrm{P}\left(X_{1}+X_{2}+X_{3}+X_{4}<Y_{1}+Y_{2}+Y_{3}\right)=\mathrm{P}\left(X_{1}+X_{2}+X_{3}+X_{4}-\left(Y_{1}+Y_{2}+Y_{3}\right)<0\right)$ Using $X_{1}+X_{2}+X_{3}+X_{4}-\left(Y_{1}+Y_{2}+Y_{3}\right) \sim N\left(150,7 \times 45^{2}\right)$ $\mathrm{P}\left(X_{1}+X_{2}+X_{3}+X_{4}-\left(Y_{1}+Y_{2}+Y_{3}\right)<0\right)=0.10386 \approx 0.104$

Qn	
8(i)	
8(ii)	Using GC, $r=0.884$ for the model $u=a x+b$ $u=a \mathrm{e}^{b x} \Rightarrow \ln u=b x+\ln a$ Using GC, $r=0.906$ for the model $u=a \mathrm{e}^{b x}$ Since the value of r is closer to 1 for the $2^{\text {nd }}$ model, $u=a e^{b x}$ is a better model. $\ln u=0.013633 x+0.94964$ $\begin{aligned} & u=\mathrm{e}^{0.013633 x+0.94964} \\ & u=2.58 \mathrm{e}^{0.0136 x}=2.6 \mathrm{e}^{0.014 x} \end{aligned}$
8(iii)	$7=2.58 \mathrm{e}^{0.0136 x} \Rightarrow x=\frac{\ln \left(\frac{7}{2.58}\right)}{0.0136}=73.391 \approx 73$ A patient with urea serum is 7 mmgl per litre is approximately 73 years old. ExamPaper Since $r=0.906$ is close to f° and m° is within the data range of urea serum, estimate is reliable.
8(iv) (a)	The product moment correlation coefficient in part (ii) will not be changed if the units for the urea serum is given in mol per decilitre.
8(iv) (b)	$u=0.258 \mathrm{e}^{0.0136 x}$

Qn	
9(i)	$\begin{aligned} & \begin{aligned} \mathrm{P}(X=2) & =\frac{18}{18} \frac{2}{17} \frac{15}{16} \frac{3!}{2!} \\ & =\frac{45}{136} \\ \mathrm{P}(X=0) & =\frac{18}{18} \frac{15}{17} \frac{12}{16} \\ & =\frac{45}{68} \end{aligned} \\ & \begin{aligned} \mathrm{P}(X=3) & =\frac{18}{18} \frac{2}{17} \frac{1}{16} \\ & =\frac{1}{136} \end{aligned} \end{aligned}$
9(ii)	$\begin{aligned} & \mathrm{E}(X)=\frac{93}{136} \\ & \mathrm{E}\left(X^{2}\right)=0 \times \frac{45}{68}+2^{2} \times \frac{45}{136}+3^{2} \times \frac{1}{136}=\frac{189}{136} \\ & \operatorname{Var}(X)=\frac{189}{136}-\left(\frac{93}{136}\right)^{2} \\ & \approx 0.922 \end{aligned}$
9(iii)	Since $n=40$ is łarge, by Central $P(\bar{X}>1)=0.0186$

Qn	
9(iv)	$\begin{aligned} & \text { Expected winnings }=-\frac{45}{68} a+\frac{45}{136}(a+10)+\frac{1}{136}(a+10) \\ & -\frac{11}{34} a+\frac{115}{34}>0 \\ & a<\frac{115}{11} \\ & a<10 . \ddot{4} \dot{5} \end{aligned}$ The possible amounts will be $1 \leq a \leq 10$ and $a \in \mathbb{Z}$.

Qn	
10(i)	Let X be the thickness of the coating on a randomly chosen computer device. Let μ be the mean thickness of the coating of a computer device. Assume that the standard deviation of the coating of a computer device remains unchanged. To test : $\begin{aligned} & H_{0}: \mu=100 \\ & H_{1}: \mu \neq 100\end{aligned}$ Level of Significance: 5\% Under H_{0}, since sample size $n=50$ is large, by Central Limit Theorem, $Z=\frac{\bar{X}-100}{10 / \sqrt{50}} \sim N(0,1)$ approx. Reject H_{0} if $p-$ value ≤ 0.05. Calculations: $\bar{x}=103.4$ $p-\text { value }=0.0162$ Conclusion: Since p-value <0.05, we reject H_{0} and conclude that there is significant evidence at 5% level of significance that the process is not in control.
10(ii)	Reject H_{0} is $\left\|z_{\text {calc }}\right\| \geq 1.960$ For H_{0} to be rejected $\begin{aligned} & \left\|\frac{\bar{x}-100}{10 / \sqrt{50}}\right\| \geq 1995996 \\ \Rightarrow & \bar{x} \leq 100-1.95996\left(\frac{10}{\sqrt{50}}\right) \text { or } \bar{x} \geq 100+1.95996\left(\frac{10}{\sqrt{50}}\right) \\ \Rightarrow & \bar{x} \leq 97.228 \text { or } \bar{x} \geq 102.772 \end{aligned}$ Thus the required range of values of \bar{x} is $0<\bar{X} \leq 97.2$ or $\bar{x} \geq 102.8$.

2019 NYJC JC2 Prelim 9758/2 Solution

Qn	
10(iii)	$\begin{aligned} & \bar{y}=\frac{4164}{40}=104.1 \\ & \Sigma(y-100)=4164-4000=164 \\ & s^{2}=\frac{1}{39}\left[\Sigma(y-100)^{2}-\frac{\left(\Sigma(y-100)^{2}\right.}{40}\right] \\ &=\frac{1}{39}\left[9447-\frac{164^{2}}{40}\right] \\ &=\frac{43873}{195}=224.9897 \end{aligned}$
10(iv)	The standard deviation may have changed due to the wear out of mechanical parts as well.
10(v)	To test : $\begin{aligned} & H_{0}: \mu=100 \\ & H_{1}: \mu \neq 100 \end{aligned}$ Level of Significance: 4\% Under H_{0}, since sample size $n=40$ is large, by Central Limit Theorem, $Z=\frac{\bar{Y}-100}{S / \sqrt{40}} \sim N(0,1) \text { approx. }$ Reject H_{0} if $\text { f } p-\text { value } \leq 0.04 \text {. }$ Calculations: $\bar{E} \times=1044.4, s^{2}=224.2997$ $p-\text { value }=0.0839$ Conclusion: Since p-value >0.04, we do not reject H_{0} and conclude that there is insignificant evidence at 4% level of significance that the process is not in control.

