Qn	Solution	Mark Scheme
5	Discrete Random Variables	[6]
(i)	$u + v + u + v = 1 \Rightarrow v = 0.5 - u$	
	E(X) = 2u + 3v + 4u + 5v	
	=6u+8v	
	=6u+8(0.5-u)	
	=4-2u	
(ii)	$E(X^{2}) = 2^{2}u + 3^{2}v + 4^{2}u + 5^{2}v$	
	=20u+34v	
	=20u+34(0.5-u)	
	=20u+17-34u	
	=17-14u	
	$Var(X) = E(X^2) - [E(X)]^2$	
	$=(17-14u)-(4-2u)^2$	
	=1.16	
	Using GC, $u = 0.1$ or $u = 0.4$.	
	Since $u > v$, $u = 0.4$ and $v = 0.1$.	

Qn	Solution	Mark Scheme
6	P&C and Probability	[9]
(i)	Round 1 Round 2 Round 3 O.5 Clear O.6 Clear O.6 Clear O.6 Clear O.6 Clear O.6 Clear	[2]
	Doesn't Clear Doesn't Clear Doesn't Clear P(a player plays 3 rounds) = P(clears round 1 but does not clear round 2) +P(does not clear round 1 but clears round 2) = $(0.6)(0.7) + (0.4)(0.6) = 0.66$	
(ii)	P(clears round 1 does not clear round 2)	
	P(clears round 1 and does not clear round 2)	
	$= \frac{1 \left(\text{clears round 1 and does not clear round 2}\right)}{P(\text{does not clear round 2})}$	
	(0.6)(0.7)	
	$=\frac{(0.6)(0.7)}{(0.6)(0.7)+(0.4)(0.4)}$	
	$= \frac{21}{29} = 0.724 \text{ (3 s.f)}$	
(iii)	P(a player clears exactly 2 rounds)	
	= P(clears round 1 and round 2)	
	+P(clears round 1, does not clear round 2, clears round 3)	
	+P(does not clear round 1, clears round 2 and round 3)	
	=(0.6)(0.3)+0.2	
	= 0.38	
(iv)	Number of ways for last digit = 5	
	Number of ways required = $9 \times 8 \times 7 \times 6 \times 5 \times 5 = 75600$	
(v)	Number of ways for 3 odd digits $=$ ${}^5C_3 = 10$	
	Number of ways for 3 even digits ${}^5C_3 = 10$	
	Number of ways required = $10 \times 10 \times 6! = 72000$	

Qn	Solution	Mark Scheme
7	Hypothesis Testing	[10]
	Let <i>X</i> be the weight of a randomly chosen mini bread (in grams).	
	Let μ denote the population mean weight of mini breads (in grams)	
	Unbiased estimate of population mean, $x = \frac{3571}{80}$	
	80	
	= 44.6375	
	Unbiased estimate of population variance, $s^2 = \frac{1}{79} \left(159701 - \frac{(3571)^2}{80} \right)$	
	= 3.8036	
	= 3.80 (3 s.f.)	
	$H_0: \mu = 45$ $H_1: \mu < 45$	
	H_1 : $\mu < 45$	
	Under H_0 , since $n = 80$ is large, by Central Limit Theorem,	
	$\overline{X} \sim N\left(45, \frac{3.8036}{80}\right)$ approximately	
	Test Statistic: $Z = \frac{\overline{X} - 45}{\sqrt{\frac{3.8036}{80}}}$	
	Level of significance : 4 %	
	Reject H_0 if p - value < 0.04	
	Using GC, p -value = 0.0482	
	Since p-value = $0.0482 > 0.04$, we do not reject H ₀ and conclude that	
	there is insufficient evidence, at the 4% level of significance, that the population mean weight is less than 45 grams. Thus, the customer's claim is not supported at the 4% significance level.	
	Sample mean based on combined sample	
	$=\frac{\sum x + 20k}{80 + 20} = \frac{3571 + 20k}{100}$	
	80 + 20 100	
	H_0 : $\mu = 45$	
	$H_1: \mu < 45$	
	Under H ₀ , $X \sim N(45, 1.5^2) \Rightarrow \overline{X} \sim N(45, \frac{1.5^2}{100})$	
	Test statistic Z P 1/15 Sapp Only 88660031	
	$\sqrt{100}$ Level of significance : 4 % Reject H ₀ if z -value < -1.7507	
	$\frac{x-45}{x-45}$	
	z - value = $\frac{1.5^2}{1.5^2}$	
	$z - \text{value} = \frac{\overline{x} - 45}{\sqrt{\frac{1.5^2}{100}}}$	

Since there is sufficient evidence that the customer's claim is valid at 4% level of significance, H_0 is rejected

$$\frac{\overline{x} - 45}{\sqrt{\frac{1.5^2}{100}}} < -1.7507$$

$$\frac{1.5^2}{100}$$

$$\overline{x} < 44.737395$$

$$\frac{3571 + 20k}{100} < 44.737395$$

$$k < 45.137$$

$$k < 45.1 \quad (3 \text{ s.f.})$$

Qn	Solution	Mark Scheme
8	Correlation and Regression	[10]
(i)	$\overline{x} = \frac{2.0 + 2.5 + 3.0 + 3.5 + 4.0 + 4.5 + 5.0 + 5.5 + 6.0}{2.0 + 2.5 + 3.0 + 3.5 + 4.0 + 4.5 + 5.0 + 5.5 + 6.0} = 4$	
	9 68 8067 7 12667(4) 40 20002	
	$\overline{y} = 68.8067 - 7.12667(4) = 40.30002$	
	62.1+51.2+44.1+39.1+35+k+33+31.4+29.5	
	9 = 40.30002	
	k = 37.30018	
	= 37.3 (to 1 d.p) (shown)	
(ii)		
()		
	у	
	62.1 +	
	+	
	+	
	* _{* * *}	
	29.5	
	$\frac{1}{2}$ $\frac{1}{6}$ x	
(iii)	Model (A): $r = -0.922$	
	Model (B): $r = -0.866$	
	Model (C): $r = 0.990$	
	Since the value of $ r = 0.990$ for Model (C) is closest to 1, Model (C) is the best model.	
	is the best model.	
	Using GC, equation of suitable regression line:	
	$y = 13.685 + \frac{94.313}{x}$	
	94 3	
	$y = 13.7 + \frac{94.3}{x}$ (3 s.f)	
(iv)		
	When $x = 4.2$, $y = 13.685 + \frac{94.313}{4.2} = 36.1$ (3 s.f)	
	Since $x = 4.2$ is within the data range of x and $ r = 0.990$ is close to	
	1, the estimated reaction time is reliable.	
	Litatiir apei 00	

Islandwide Delivery | Whatsapp Only 88660031

Qn	Solution	Mark Scheme
9	Normal and Sampling Distributions	[12]
(i)	Let A be the mass of a randomly chosen Alpha apple in grams.	[52]
	Given $A \sim N(\mu, \sigma^2)$	
	$\overline{A} \sim N\left(\mu, \frac{\sigma^2}{8}\right)$ and $A_1 + A_2 + A_3 + + A_8 \sim N\left(8\mu, 8\sigma^2\right)$	
	$P(A_1 + A_2 + + A_8 > 3000) = 0.5 \implies 8\mu = 3000 \implies \mu = 375$	
	$P(\overline{A} < 370) = 0.25$	
	$P \left Z < \frac{370 - \mu}{\sqrt{2}} \right = 0.25$	
	$P\left(Z < \frac{370 - \mu}{\sqrt{\frac{\sigma^2}{8}}}\right) = 0.25$	
	370-375	
	$\frac{370 - 375}{\sqrt{\frac{\sigma^2}{\Omega}}} = -0.67449$	
	$\sqrt{8}$	
	$\sigma = 21.0 \ (3s.f)$	
(ii)	$A \sim N(380, 20^2)$	
	Let $S = A_1 + A_2 + + A_8 \sim N(8 \times 380, 8 \times 20^2) = N(3040, 3200)$	
	P(2900 < S < 3100) = 0.849 (3s.f.)	
(iii)	Let <i>B</i> be the mass of a randomly chosen Beta apple in grams.	
	$B \sim N(250, 18^2)$	
	Let $T = B_1 + B_2 + + B_{12} \sim N(12 \times 250, 12 \times 18^2) = N(3000, 3888)$.	
	Let $C = 0.7S + 0.8T$.	
	$E(C) = 0.7 \times 3040 + 0.8 \times 3000 = 4528$	
	$Var(C) = 0.7^2 \times 3200 + 0.8^2 \times 3888 = 4056.32$	
	$C \sim N(4528, 4056.32)$	
	P(C > 4500) = 0.670 (3 s.f)	
(iv)	Assume that the distributions of the masses of all apples are independent of one another.	
	p = P(0.9C > 4100) = P(C > 4555.6) < P(C > 4500)	
	Thus p is lower than the answer in part (iii).	

Qn	Solution	Mark Scheme
10	Binomial Distribution and Probability	[13]
(a)	The conditional probability, p , that a randomly chosen sweet is red is not the same for the 1 st to the 5 th sweets.	
	For example, for the first sweet, $p = \frac{6}{10}$. For the second sweet, $p = \frac{5}{9}$ if the	
	first sweet is red and $p = \frac{6}{9}$ if the first sweet is not red.	
	Hence, whether a randomly chosen sweet is red or not is not independent of other sweets.	
(b)(i)	Let <i>X</i> be the no of sweets, out of 10, that are red. $X \sim B(10,p)$	
	Given that $P(X = 5) = 0.21253$,	
	$\binom{10}{5} p^5 (1-p)^5 = 0.21253$	
	$p^5 \left(1 - p\right)^5 = 0.00084337$	
	$p\left(1-p\right) = 0.24277$	
	k = 0.24277 = 0.243 (3 s.f.)	
	Using GC, $p = 0.415$ or 0.585 (3 s.f.)	
(ii)	$X \sim B(10,0.6)$	
	$P(X \le 8 X > 2)$	
	$=\frac{P(2 < X \le 8)}{P(X > 2)}$	
	$= \frac{P(X \le 8) - P(X \le 2)}{1 - P(X \le 2)}$	
	_ 0.94135	
	$-\frac{1}{0.98771}$	
(:::)	= 0.953	
(iii)	Required Probability = $P(X \le 5) \times P(X \ge 5) \times 2 - P(X = 5)^2$	
	$= P(X \le 5) \times (1 - P(X \le 4)) \times 2 - P(X = 5)^{2}$	
	= 0.572	
	KIASU ExamPaper Islandwide Delivery Whatsapp Only 88660031	
	Required Probability	
	= $P(X \le 5) \times P(X > 5) \times 2 + P(X = 5) \times P(X < 5) \times 2 + P(X = 5)^{2}$	
	=0.572	

(iv)
$$P(|X_1 - X_2| \ge 8)$$

$$= [P(X_1 = 10) \times P(X_2 \le 2) + P(X_1 = 9) \times P(X_2 \le 1) + P(X_1 = 8) \times P(X_2 = 0)] \times 2$$

$$Consider 3 cases$$

$$Consider 2 cases$$

$$= 0.000309$$

