1. [AJC 18 J2 MYE]

Two non-zero vectors, $\mathbf{a} + k\mathbf{b}$ and $\mathbf{a} - k\mathbf{b}$ are perpendicular to each other, where k is a positive constant and \mathbf{a} is a unit vector.

Find the magnitude of \mathbf{b} in terms of k.

2. [AJC 18 J2 MYE]

The plane Π contains the origin O and is parallel to vectors $-\mathbf{i} + \mathbf{k}$ and $\mathbf{i} + 2\mathbf{j}$.

(a) Find an equation of the plane Π in scalar product form.

The point P has coordinates (3, 1, 2).

(b) By finding the foot of perpendicular, N, of point P to the plane Π , show that the position vector of the mirror image of P in Π is $-\mathbf{i} + 3\mathbf{j} - 2\mathbf{k}$.

The point Q has coordinates (4, 0, 1).

- (c) Find the exact length of projection of PQ on to the plane Π .
- (d) Hence, or otherwise, find the exact area of the triangle PNQ.

3. [DHS J2 18 MYE]

Relative to the origin O, two points A and B have position vectors \mathbf{a} and \mathbf{b} respectively, where \mathbf{a} and \mathbf{b} are non-parallel vectors. The points C and D lie on the midpoints of OA and AB respectively. The line segments OD and BC intersect at the point P such that $OP : PD = \lambda : 1 - \lambda$.

- (a) Find \overrightarrow{OP} in terms of λ , **a** and **b**.
- (b) Show that the ratio of BP : PC is 2:1.

4. [MI J2 18 MYE]

Referred to the origin O, a laser beam l_1 is fired from the point A with coordinates (1, -2, 4) and passes through the point B with coordinates (2, -1, s). Another laser beam can be modelled as the line l_2 with equation $\frac{x-1}{-3} = \frac{y+2}{4}, z = 4$.

(a) Find the cosine of the acute angle between the two laser beams, leaving your answer in terms of s.

It is given that s = 3.

(b) Find the coordinates of the point corresponding to the shortest distance from the point B to the laser beam l_2 . Hence find the shortest distance.

The laser beams are fired at a glass block. One of the surfaces of the galss block can

be modelled as a plane with equation $\mathbf{r} \cdot \begin{pmatrix} -1 \\ -2 \\ 1 \end{pmatrix} = 1.$

(c) Find the position vector of the point where the laser beam l_1 meets the glass block.

(d) Another surface of the glass block has equation $\mathbf{r} \cdot \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix} = 6$. Find the exact thickness of the glass block.

[2]

[3]

[3]

[2]

[1]

[4]

[4]

[3]

[2]

[3]

Answers

1.
$$\frac{1}{k}$$
.
2. (a) $\mathbf{r} \cdot \begin{pmatrix} 2\\ -1\\ 2 \end{pmatrix} = 0.$
(c) $\frac{\sqrt{26}}{3}$.
(d) $\frac{\sqrt{26}}{2}$.
3. $\frac{\lambda}{2}(\mathbf{a} + \mathbf{b})$.
4. (a) $\frac{1}{5\sqrt{(s-4)^2+2}}$.
(b) $(\frac{22}{25}, -\frac{46}{25}, 4), \frac{\sqrt{74}}{5}$.
(c) $\frac{1}{2} \begin{pmatrix} 5\\ -1\\ 5 \end{pmatrix}$.
(d) $\frac{7\sqrt{6}}{6}$.