Module 4: Calculus (Integration, Definite Integrals & DE)

1. [2017/RI/P1/3]

(a) Find
$$\int \frac{x+2}{\sqrt{(1-8x-4x^2)}} dx.$$
 [4]

(b) Use the substitution $x = 2 \sec \theta$ to find the exact value of $\int_{2}^{4} \frac{1}{x} \sqrt{(x^2 - 4)} dx$. [4]

2. [2017/SRJC/P1/9]

- (a) Using the substitution u = 2x + 3, find $\int \frac{x}{(2x+3)^3} dx$ in the for $-\frac{Px+Q}{R(2x+3)^2} + c$
 - where P, Q and R are positive integers to be determined. [3]

Hence find
$$\int \frac{x \ln(4x+3)}{(2x+3)^3} dx$$
. [3]

(b) Find $\int \sin 4x \cos 6x \, dx$. [2]

Hence or otherwise, find $\int e^x \sin 4e^x \cos 6e^x dx$. [1]

3. [2016/HCI/P1/8]

The curve C (as shown in the diagram below) has equation $y = x^2 \sin x$, $-\pi \le x \le \pi$.

(i) Calculate the exact area of the region R enclosed by C and the x-axis. [4]

- (ii) Sketch the curve with equation $(y+1)^2 4(x+2)^2 = 1$, showing clearly the coordinates of the turning points and the equation(s) of any asymptote(s). [2]
- (iii) Hence find the volume of the solid generated when the region bounded by the 2 curves is rotated through 4 right angles about the *x*-axis. [4]

4. [2016/HCI/P2/3]

(i) Use the substitution
$$x = 3\sin\theta + 1$$
, $0 < \theta < \frac{\pi}{2}$ to find $\int \frac{x}{\sqrt{9 - (x - 1)^2}} dx$. [4]

(ii) A curve has parametric equations

$$x = \frac{1}{\sqrt{9 - (t - 1)^2}}, \quad y = t^2, \quad 0 < t < 4.$$

- (a) Sketch the curve, indicating the end point and the equation of the asymptote.
- (b) Using the result in part (i), find the exact area of the region bounded by the curve, the lines y = 1, $y = \frac{25}{4}$ and $x = \frac{8}{7}$. [4]

5. [2016/NYJC/P1/9(modified)]

Two biologists are investigating the growth of a certain bacteria of size x hundred thousand at time t days. It is known that the number of bacteria initially is 20% of a, where a is a positive constant.

(i) One biologist believes that x and t are related by the differential equation $\frac{dx}{dt} = x(a-x)$. Given that the number of bacteria increases to 50% of a when

$$t = \ln 2$$
 days, show that $x = \frac{2}{4e^{-2t} + 1}$. [7]

(ii) Another biologist believes that x and t are related by the differential equation $\frac{d^2x}{dt^2} = 10 - 9t^2$. Find the general solution of this differential equation. [3]

6. [2012/AJC/P2/4(b)]

A new drug for the treatment of diabetes is administered to a patient at a constant rate of R mg per day. The rate at which the drug is lost from the patient's body is proportional to the square of the amount x (mg) of the drug present in his body at time t (days).

(i) If the amount of drug in the patient remains constant at the instant when it is 2R

(mg), show that
$$\frac{\mathrm{d}x}{\mathrm{d}t} = \frac{4R^2 - x^2}{4R}$$
.

Given that, when x = 0 when t = 0, find x, in terms of R and t. [5]

(ii) Explain the significance of this result in the long run. [1]

[3]

Answers:

1.
(a)
$$-\frac{1}{4}\sqrt{1-8x-4x^2} + \frac{1}{2}\sin^{-1}\frac{2\sqrt{5}(x+1)}{5} + C$$

(b) $2\left[\sqrt{3} - \frac{\pi}{3}\right]$
2. (a) $P = 4, Q = 3$ and $R = 8$
 $\int \frac{x\ln(4x+3)}{(2x+3)^3} dx = -\frac{(4x+3)\ln(4x+3)+2(2x+3)}{8(2x+3)^2} + C$
(b) $-\frac{1}{20}\cos 10x + \frac{1}{4}\cos 2x + C$, $-\frac{1}{20}\cos 10e^x + \frac{1}{4}\cos 2e^x + C$
3. (i) $2(\pi^2 - 4)$ units²
(ii)
 $y^{y=-2x\sqrt{5}}$
(iii) 26.8 units³
4. (i) $-\sqrt{9-(x-1)^2} + \sin^{-1}\frac{x-1}{3} + C$
(i)(a)
 $y^{y=16}$
 $\frac{1}{2\sqrt{2}}$
(ii)(b) $3\sqrt{3} - \frac{\pi}{3}$
5. (ii) $x = 5t^2 - \frac{3}{4}t^4 + At + 0.2a$
(a) The arrange to find in the body will not avoid 2*R* mg range

6. The amount of drug in the body will not exceed 2R mg regardless of the period of treatment.