1 Question 1 (TMJC 2020 Promos Q8)

The plane π contains the point A with coordinates $(-2,1,4)$ and the line with equation $\mathbf{r}=\left(\begin{array}{l}0 \\ 3 \\ 2\end{array}\right)+\lambda\left(\begin{array}{c}-2 \\ 0 \\ 1\end{array}\right)$, where λ is a parameter.
(i) Show that the cartesian equation of π is $x+y+2 z=7$.

Let L be the set of lines such that the equation of any line l_{a} in L is given by $\mathbf{r}=\left(\begin{array}{c}-2 a-2 \\ 1 \\ 4 a+2\end{array}\right)+\mu\left(\begin{array}{c}-4-a \\ 1 \\ 2 a+3\end{array}\right)$, where μ is a parameter and a is a real constant.
(ii) Verify that the point B with coordinates $(6,-1,-4)$ lies on any line l_{a} in L.

The equation of a particular line l_{c} in L is given by $\mathbf{r}=\left(\begin{array}{c}-2 c-2 \\ 1 \\ 4 c+2\end{array}\right)+\mu\left(\begin{array}{c}-4-c \\ 1 \\ 2 c+3\end{array}\right)$,
where μ is a parameter and c is a real constant. It is given that l_{c} is parallel to π.
(iii) Show that $c=-1$.
(iv) Find the exact distance between l_{c} and π.
(v) Point F is the foot of perpendicular from $B(6,-1,-4)$ to π and point C is on l_{c}. Given that the area of triangle $B C F$ is $\frac{\sqrt{66}}{4}$ units 2, find possible position vectors of C.

2 Question 2 (RI 2020 Promos Q2)

2 Referred to an origin O, points A and B have position vectors given respectively by $\mathbf{i}+4 \mathbf{j}+8 \mathbf{k}$ and $6 \mathbf{i}+2 \mathbf{j}+3 \mathbf{k}$. The point P on $A B$ is such that $A P: P B=1-\lambda: \lambda$.
(i) Show that the exact area of triangle $O A B$ is $\frac{5}{2} \sqrt{101}$.
(ii) Find the exact value of λ for which $O P$ is perpendicular to $A B$.
(iii) Find the exact value of λ for which angles $A O P$ and $P O B$ are equal.

3 Question 3 (TJC 2020 Promos Q9)

The points A, B and C lie on the circumference of a circle with center O and diameter $A C$. It is given that $\overrightarrow{O A}=\mathbf{a}$ and $\overrightarrow{O B}=\mathbf{b}$.
(i) Find $\overrightarrow{B C}$ in terms of \mathbf{a} and \mathbf{b}. Hence show that $A B$ is perpendicular to $B C$.

The point D is on $B C$ such that $B D: D C=3: 2$.
(ii) Show that the area of triangle $O C D$ can be written as $k|\mathbf{a} \times \mathbf{b}|$ where k is a real constant to be found.
(iii) Given that angle $A O B=120^{\circ}$, find $\overrightarrow{O N}$ in terms of a where N is the foot of perpendicular of D to $A C$.

4 Question 4 (TJC 2020 Promos Q10)

Points A and B have coordinates $(1,2,1)$ and $(1,-5,2)$ respectively. The line $B C$ has equation $\mathbf{r}=\left(\begin{array}{c}1 \\ -5 \\ 2\end{array}\right)+\lambda\left(\begin{array}{c}-2 \\ 1 \\ 1\end{array}\right), \lambda \in \mathbb{R}$.
(i) Given that $A B=A C$, show that the coordinates of point C is $(-3,-3,4)$.
(ii) Find the cosine of angle $B A C$ and hence find the exact area of triangle $A B C$.
(iii) Plane p is parallel to plane $A B C$ and it is $\sqrt{\frac{11}{6}}$ units from plane $A B C$. Find the possible equations of p.
(iv) Point D lies on p. Deduce the exact volume of the tetrahedron $A B C D$.
[The volume of a tetrahedron of base area A and height h is given by $\left.V=\frac{1}{3} A h.\right]$

5 Question 5 (RI 2020 Promos Q9)

The plane p passes through the points with coordinates $(2,2,4),(0,6,8)$ and $(-2,-2,-3)$.
(i) Find a cartesian equation of p.

The line l has equation $x-4=4-y, z=9$.
(ii) Show that the coordinates of the point of intersection of l and p is $(2,6,9)$.
(iii) Find an equation of the line which is a reflection of l in p.

6 Question 6 (NJC 2020 Promos Q8)

Points A, B and C are non-collinear and origin O is not on the plane $A B C$. Point P has position vector given by $\overrightarrow{O P}=\lambda \overrightarrow{O A}+\mu \overrightarrow{O B}+(1-\lambda-\mu) \overrightarrow{O C}$, where $\lambda, \mu \in \mathbb{R}$.
(i) Prove that P lies in the plane $A B C$.

It is now given that $\overrightarrow{O A}=\mathbf{i}+\mathbf{j}+\mathbf{k}, \overrightarrow{O B}=2 \mathbf{i}+2 \mathbf{j}+4 \mathbf{k}$ and $\overrightarrow{O C}=-2 \mathbf{i}+\mathbf{k}$. Furthermore, P is the point of reflection of B in the line passing through A and C.
(ii) Find the value of λ and of μ.

7 Question 7 (NJC 2020 Promos Q7)

Referred to the origin, points A and B have non-zero position vectors a and \mathbf{b} respectively.
(i) Show that $(\mathbf{a}+\mathbf{b}) \times(\mathbf{a}-\mathbf{b})=-2(\mathbf{a} \times \mathbf{b})$.

It is given that $|\mathbf{b}|=2|\mathbf{a}|$.
(ii) Find the maximum value of $|(\mathbf{a}+\mathbf{b}) \times(\mathbf{a}-\mathbf{b})|$ in terms of $|\mathbf{a}|$.

It is further given that A is a fixed point on the x-axis and B is a variable point on the $x z$-plane.
(iii) Given that the value of $|(\mathbf{a}+\mathbf{b}) \times(\mathbf{a}-\mathbf{b})|$ is maximum, write down all possible expressions for $(\mathbf{a}+\mathbf{b}) \times(\mathbf{a}-\mathbf{b})$ in terms of $|\mathbf{a}|$.

8 Question 8 (EJC 2020 Promos Q12)

Stereophotogrammetry is a method of determining coordinates of points in the three-dimensional (3D) replication of physical scenes. It relies on using multiple images taken by digital cameras from different positions.

In a simplistic model for this process, the camera sensors are represented by planes with finite size. A ray of sight for a particular point in the physical scene is defined as the line passing through its image point on the camera sensor and the focal point of the camera. The 3-D coordinates of a particular point is the intersection of the rays of sight from the different cameras.

For a particular set up, Camera 1 has focal point, F_{1} at $(20,5,10)$ and Camera 2 has focal point, F_{2} at $(-20,5,10)$. The image point of a point A, the highest tip of a flag pole, on Camera 1 is $A_{1}\left(\frac{61}{3}, 0, \frac{28}{3}\right)$, and the image point of A on Camera 2 is $A_{2}\left(-\frac{67}{3}, 0, \frac{28}{3}\right)$.
(i) Find the vector equations of l_{1} and l_{2}, the rays of sight for point A from the Cameras 1 and 2 respectively, and hence find the coordinates of point A.

The base of the flag pole is known to be on the plane P that contains the point $D(75,90,-50)$ and the
line L with equation $\mathbf{r}=\left(\begin{array}{c}23 \\ 90 \\ -46\end{array}\right)+s\left(\begin{array}{c}-1 \\ 6 \\ 1\end{array}\right), s \in \mathbb{R}$.
(ii) Show that the vector equation of the plane P is $\mathbf{r} \cdot\left(\begin{array}{c}1 \\ -2 \\ 13\end{array}\right)=-755$.

The flag pole was erected perpendicular to the base plane P.
(iii) Find the coordinates of the point B, the base of the flag pole.
(iv) Hence or otherwise, find the length of the flag pole.
(v) Given that the horizontal plane in this model is the $x-y$ plane, find the angle of incline for the plane P from the horizontal plane.

9 Question 9 (EJC 2020 Promos Q5)

(a) The variable vector \mathbf{u} satisfies the following equations:

$$
\begin{aligned}
& \mathbf{u} \cdot\left(\begin{array}{c}
4 \\
1 \\
-2
\end{array}\right)=-6 \text { and } \\
& \mathbf{u} \times\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)=k\left(\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right), \text { for } k \in \mathbb{R}, k \neq 0 .
\end{aligned}
$$

(i) Explain why $\mathbf{u} \cdot\left(\begin{array}{c}1 \\ -2 \\ 1\end{array}\right)=0$.
(ii) Hence or otherwise, find the set of vectors \mathbf{u} and describe this set geometrically.
(b) The points A, B and C have distinct non-zero position vectors \mathbf{a}, \mathbf{b} and \mathbf{c} respectively and the vectors satisfy the equation $\mathbf{c}=\lambda \mathbf{a}+(1-\lambda) \mathbf{b}$ where $\lambda \in \mathbb{R}, \lambda \neq 0, \lambda \neq 1$. Prove that the points A, B and C are collinear.
(c) Given that the point P has a non-zero position vector \mathbf{p} and that the plane Π has equation $\mathbf{r} \cdot \mathbf{n}=0$, where \mathbf{n} is a unit vector, state the geometrical meaning of $|\mathbf{p} \cdot \mathbf{n}|$ in relation to the point P and the plane Π.

10 Answers

1. (iv) $\frac{5 \sqrt{6}}{3}$ units.
(v) $\overrightarrow{O C}=\frac{1}{10}\left(\begin{array}{c}51 \\ -7 \\ -37\end{array}\right)$ or $\frac{1}{10}\left(\begin{array}{c}69 \\ -13 \\ -43\end{array}\right)$.
2. (ii) $\lambda=\frac{11}{54}$.
(iii) $\lambda=\frac{7}{16}$.
3. (i) $\overrightarrow{B C}=-\mathbf{a}-\mathbf{b}$.
(ii) $k=\frac{1}{5}$.
(iii) $\overrightarrow{O N}=-\frac{4}{5} \mathbf{a}$.
4. (ii) $\cos (\angle B A C)=\frac{38}{50}$.

$$
\text { Area }=2 \sqrt{66} \text { units }^{2}
$$

(iii) $\mathbf{r} \cdot\left(\begin{array}{l}4 \\ 1 \\ 7\end{array}\right)=24$ or $\mathbf{r} \cdot\left(\begin{array}{l}4 \\ 1 \\ 7\end{array}\right)=2$.
(iv) $\frac{22}{3}$ units 3.
5. (i) $2 x+5 y-4 z=-2$.
(iii) $\mathbf{r}=\left(\begin{array}{l}2 \\ 6 \\ 9\end{array}\right)+\lambda\left(\begin{array}{c}19 \\ -5 \\ -8\end{array}\right), \lambda \in \mathbb{R}$.
6. $\lambda=2.8, \mu=-1$.
7. $4|\mathbf{a}|^{2}$.
8. (i) $A(15,80,20)$.
(iii) $B(10,90,-45)$.
(iv) 66.0 units.
(v) 9.8°.
9. (iii) It is the perpendicular distance from point P to the plane Π.

