1. [RVHS 2020 Promos Q10]

Functions f and g are defined by

$$
\begin{aligned}
& \mathrm{f}: x \mapsto \frac{1}{x-2}, \quad x \in \mathbb{R}, x \neq 2, \\
& \mathrm{~g}: x \mapsto x^{2}-4 x, \quad x \in \mathbb{R} .
\end{aligned}
$$

(i) Determine whether the composite functions fg and gf exist. Find the range of the composite function that exists.
For the rest of the question, the domain of f is restricted to $x \in \mathbb{R}, x<2$.
(ii) Define f^{-1} in similar form.
(iii) Sketch on a single clearly labelled diagram, the graphs of $y=\mathrm{f}(x)$ and $y=\mathrm{f}^{-1}(x)$, showing clearly the relationship between the graphs and stating the equations of any asymptotes and the coordinates of any axial intercepts.
(iv) Write down the line in which the graph of $y=\mathrm{f}(x)$ must be reflected in order to obtain the graph of $y=\mathrm{f}^{-1}(x)$, and find the exact solution of the equation $\mathrm{f}(x)=\mathrm{f}^{-1}(x)$.
2. [NJC 2020 Promos Q9]
(a) The functions f and g are defined by

$$
\begin{array}{ll}
\mathrm{f}: x \mapsto \frac{1}{1+x}-2, \quad \text { for } x \in \mathbb{R}, x \geq 0, \\
\mathrm{~g}: x \mapsto\left(x+\frac{4}{3}\right)^{2}-\frac{1}{5}, & \text { for } x \in \mathbb{R} .
\end{array}
$$

(i) Determine whether the composite function fg exists.
(ii) Sketch the graph of $y=\mathrm{f}(x)$ and find the range of f .
(iii) Find the exact range of gf.
(b) The function h is defined by

$$
\mathrm{h}: x \mapsto(x+1)^{2}(x-2), x \in \mathbb{R} .
$$

(i) Explain why the function h^{-1} does not exist.

For the rest of the question, the domain of h is restricted to $x \in[-1,1]$.
(ii) State the domain of h^{-1}.
(iii) Sketch on the same diagram the graphs of $y=\mathrm{h}(x), y=\mathrm{h}^{-1}(x)$ and

$$
\begin{equation*}
y=\mathrm{h}^{-1} \mathrm{~h}(x) . \tag{3}
\end{equation*}
$$

3. [TMJC 2020 Promos Q7]

The function f is defined by

$$
\mathrm{f}: x \mapsto-\ln (x-2), \quad x \in \mathbb{R}, \quad 2<x \leq 3 .
$$

(i) Find $\mathrm{f}^{-1}(x)$ and state the domain and range of f^{-1}.
(ii) Sketch on the same diagram the graphs of $y=\mathrm{f}(x), y=\mathrm{f}^{-1}(x)$ and $y=\mathrm{f}^{-1} \mathrm{f}(x)$, giving the equations of any asymptotes and the exact coordinates of any points where the curves cross the x - and y-axes.
(iii) Explain why the x-coordinate of the point of intersection of the graph of $y=\mathrm{f}(x)$ and $y=\mathrm{f}^{-1}(x)$ satisfies the equation

$$
\begin{equation*}
x+\ln (x-2)=0, \tag{2}
\end{equation*}
$$

and find the value of this x-coordinate.

4. [HCI 2020 Promos Q11]

The function f is defined by

$$
\mathrm{f}: x \mapsto \begin{cases}\cos \frac{\pi x}{2}, & 0 \leq x<1 \\ 1-x, & 1 \leq x \leq 2\end{cases}
$$

(i) Sketch the graph of f, indicating clearly the coordinates of the axial intercepts and endpoints.
(ii) Show that f has an inverse, and define it in similar form.
(iii) Find the range of values of x for which $\mathrm{ff}^{-1}(x)=\mathrm{f}^{-1} \mathrm{f}(x)$.
(iv) The function g is defined by

$$
\mathrm{g}: x \mapsto \mathrm{e}^{x}, 0 \leq x \leq \ln 2 .
$$

Find the range of fg .

5. [YIJC 2020 Promos Q8]

The function h is defined by

$$
\mathrm{h}: x \mapsto \mathrm{e}^{x-1}, \quad \text { where } x \in \mathbb{R}, x \geq-2
$$

(i) Find $\mathrm{h}^{-1}(x)$ and state the domain of h^{-1}.

The function g is defined by

$$
\mathrm{g}: x \mapsto x^{2}-1, \quad \text { where } x \in \mathbb{R}, x \geq 0
$$

(ii) Explain why the composite function hg exists.
(iii) Find the exact solution of $\operatorname{hg}(x)=5$.
(iv) Find the exact range of hg.
6. [VJC 2020 Promos Q6]

The functions f and g are defined by

$$
\begin{array}{ll}
\mathrm{f}: x \mapsto\left|3 \mathrm{e}^{-x}-8\right|-2, & x \in \mathbb{R}, x \geqslant \lambda \\
\mathrm{~g}: x \mapsto a \sin x, & x \in \mathbb{R}, 0<x<\pi
\end{array}
$$

where a is a positive constant.
(i) Find the smallest value of λ, in exact form, for f^{-1} to exist.

For the rest of the question, λ takes the value found in part (i).
(ii) Find $\mathrm{f}^{-1}(x)$.
(iii) Find, in terms of a, the range of fg.

7. [TMJC 2020 Promos Q3]

Functions f and g are defined by

$$
\begin{array}{lll}
\mathrm{f}: x \mapsto x-2, & x \in \mathbb{R}, & x \leq 4, \\
\mathrm{~g}: x \mapsto \frac{x}{3}, & x \in \mathbb{R}, & x \leq 3 .
\end{array}
$$

(i) Explain why the composite function fg exists.
(ii) Write down $\mathrm{fg}(x)$.
(iii) State a sequence of transformations that will transform the graph of $y=\operatorname{fg}(x)$ onto the graph of $y=x$. The domain of fg need not be considered in this part of the question.

The range of the function h is the set of all real numbers. The function hfg is defined by

$$
\operatorname{hfg}: x \mapsto \ln \left(-\frac{x}{3}+6\right), \quad x \in \mathbb{R}, \quad x \leq 3
$$

(iv) Find h in a similar form.

Answers

1. (i) Since $R_{g}=[-4, \infty) \nsubseteq(-\infty, 2) \cup(2, \infty)=D_{f}, f g$ does not exist.

Since $R_{f}=(-\infty, 0) \cup(0, \infty) \subseteq(-\infty, \infty)=D_{g}, g f$ exists.
$R_{g f}=[-4, \infty)$.
(ii) $f^{-1}: x \mapsto 2+\frac{1}{x}, \quad x<0$.
(iv) $1-\sqrt{2}$.
2. (a) i. Since $R_{g}=\left[-\frac{1}{5}, \infty\right) \nsubseteq[0, \infty)$, $f g$ does not exist.
ii. $R_{f}=(-2,1]$.
iii. $R_{g f}=\left[-\frac{1}{5}, \frac{11}{45}\right)$.
(b) i. The horizontal line $y=-1$ cuts the graph of $y=h(x)$ at more than one point. Hence h is not one-one. Therefore h^{-1} does not exist.
ii. $D_{h^{-1}}=R_{h}=[-4,0]$.
3. (i) $f^{-1}(x)=e^{-x}+2$.
$D_{f^{-1}}=R_{f}=[0, \infty)$.
$R_{f^{-1}}=D_{f}=(2,3]$.
(iii) $x=2.12$.
4. (ii) All horizontal line $y=k, k \in \mathbb{R}$ cuts the graph of $y=f(x)$ at most once.

Hence f is one-one and f has an inverse.
$f^{-1} x: \mapsto\left\{\begin{array}{ll}\frac{2 \cos ^{-1} x}{\pi}, & 0<x \leq 1 \\ 1-x, & -1 \leq x \leq 0\end{array}\right.$.
(iii) $0 \leq x \leq 1$.
(iv) $R_{f g}=[-1,0]$.
5. (i) $h^{-1}(x)=\ln x+1$.
$D_{h^{-1}}=R_{h}=\left[e^{-3}, \infty\right)$.
(ii) Since $R_{g}=[-1, \infty) \subseteq[-2, \infty)=D_{h}, h g$ exists.
(iii) $x=\sqrt{2+\ln 5}$.
(iv) $R_{h g}=\left[e^{-2}, \infty\right)$.
6. (i) $-\ln \frac{8}{3}$.
(ii) $f^{-1}(x)=\ln \left(2-\frac{x}{3}\right)$.
(iii) $R_{f g}=\left(3,6-3 e^{-a}\right]$.
7. (i) $R_{g}=(-\infty, 1] \subseteq(-\infty, 4]$ so $f g$ exists.
(ii) $f g(x)=\frac{x}{3}-2$.
(iii) A: Scale by the factor of $\frac{1}{3}$ parallel to the x-axis.

B: Translate by 2 units in the negative x-direction.
(iv) $h: x \mapsto \ln (-x+4), \quad x \in \mathbb{R}, x<4$.

