1. [RVHS 2020 Promos Q10]

Functions f and g are defined by

$$f: x \mapsto \frac{1}{x-2}, \quad x \in \mathbb{R}, \ x \neq 2,$$
$$g: x \mapsto x^2 - 4x, \quad x \in \mathbb{R}.$$

(i) Determine whether the composite functions fg and gf exist. Find the range of the composite function that exists. [4]

For the rest of the question, the domain of f is restricted to $x \in \mathbb{R}$, x < 2.

- (ii) Define f^{-1} in similar form.
- (iii) Sketch on a **single** clearly labelled diagram, the graphs of y = f(x) and $y = f^{-1}(x)$, showing clearly the relationship between the graphs and stating the equations of any asymptotes and the coordinates of any axial intercepts. [2]
- (iv) Write down the line in which the graph of y = f(x) must be reflected in order to obtain the graph of $y = f^{-1}(x)$, and find the exact solution of the equation $f(x) = f^{-1}(x)$. [3]

2. [NJC 2020 Promos Q9]

(a) The functions f and g are defined by

$$f: x \mapsto \frac{1}{1+x} - 2, \qquad \text{for } x \in \mathbb{R}, \ x \ge 0,$$
$$g: x \mapsto \left(x + \frac{4}{3}\right)^2 - \frac{1}{5}, \quad \text{for } x \in \mathbb{R}.$$

- (i) Determine whether the composite function fg exists. [2]
- (ii) Sketch the graph of y = f(x) and find the range of f. [2]
- (iii) Find the exact range of gf. [2]
- (b) The function h is defined by

$$\mathbf{h}: x \mapsto (x+1)^2 (x-2), \ x \in \mathbb{R}.$$

(i) Explain why the function h^{-1} does not exist. [1]

For the rest of the question, the domain of h is restricted to $x \in [-1,1]$.

(ii) State the domain of h^{-1} . [1]

(iii) Sketch on the same diagram the graphs of
$$y = h(x)$$
, $y = h^{-1}(x)$ and $y = h^{-1}h(x)$. [3]

[2]

3. [TMJC 2020 Promos Q7]

The function f is defined by

$$f: x \mapsto -\ln(x-2), \quad x \in \mathbb{R}, \ 2 < x \le 3.$$

- (i) Find $f^{-1}(x)$ and state the domain and range of f^{-1} . [4]
- (ii) Sketch on the same diagram the graphs of y = f(x), y = f⁻¹(x) and y = f⁻¹f(x), giving the equations of any asymptotes and the exact coordinates of any points where the curves cross the x- and y- axes.

(iii) Explain why the *x*-coordinate of the point of intersection of the graph of y = f(x)and $y = f^{-1}(x)$ satisfies the equation

$$x + \ln\left(x - 2\right) = 0,$$

[2]

[2]

and find the value of this *x*-coordinate.

4. [HCI 2020 Promos Q11]

The function f is defined by

$$\mathbf{f}: x \mapsto \begin{cases} \cos \frac{\pi x}{2}, & 0 \le x < 1\\ 1 - x, & 1 \le x \le 2. \end{cases}$$

- (i) Sketch the graph of f, indicating clearly the coordinates of the axial intercepts and endpoints.
 [3]
- (ii) Show that f has an inverse, and define it in similar form. [5]
- (iii) Find the range of values of x for which $f f^{-1}(x) = f^{-1} f(x)$. [2]
- (iv) The function g is defined by

$$g: x \mapsto e^x, \ 0 \le x \le \ln 2$$
.

Find the range of fg.

5. [YIJC 2020 Promos Q8]

The function h is defined by

h: $x \mapsto e^{x-1}$, where $x \in \mathbb{R}$, $x \ge -2$.

Find $h^{-1}(x)$ and state the domain of h^{-1} . **(i)** [2]

The function g is defined by

 $g: x \mapsto x^2 - 1$, where $x \in \mathbb{R}, x \ge 0$.

(ii)	Explain why the composite function hg exists.	[2]
(iii)	Find the exact solution of $hg(x) = 5$.	[3]

Find the exact range of hg. [1] (iv)

6. [VJC 2020 Promos Q6]

The functions f and g are defined by

$\mathbf{f}: x \mapsto \left 3 \mathrm{e}^{-x} - 8 \right - 2,$	$x \in \mathbb{R}, x \ge \lambda,$
$g: x \mapsto a \sin x$,	$x \in \mathbb{R}, 0 < x < \pi,$

where *a* is a positive constant.

(i) Find the smallest value of λ , in exact form, for f^{-1} to exist.	[2]
--	-----

For the rest of the question, λ takes the value found in part (i).

(ii)	Find $f^{-1}(x)$.	[3]
(iii)	Find, in terms of <i>a</i> , the range of fg.	[2]

(iii) Find, in terms of *a*, the range of fg.

7. [TMJC 2020 Promos Q3]

Functions f and g are defined by

f:
$$x \mapsto x-2$$
, $x \in \mathbb{R}$, $x \le 4$,
g: $x \mapsto \frac{x}{3}$, $x \in \mathbb{R}$, $x \le 3$.

- (i) Explain why the composite function fg exists. [2]
- (ii) Write down fg(x). [1]
- (iii) State a sequence of transformations that will transform the graph of y = fg(x) onto the graph of y = x. The domain of fg need not be considered in this part of the question. [2]

The range of the function h is the set of all real numbers. The function hfg is defined by

hfg:
$$x \mapsto \ln\left(-\frac{x}{3}+6\right)$$
, $x \in \mathbb{R}$, $x \le 3$.

(iv) Find h in a similar form.

[3]

Answers

- 1. (i) Since $R_g = [-4, \infty) \not\subseteq (-\infty, 2) \cup (2, \infty) = D_f$, fg does not exist. Since $R_f = (-\infty, 0) \cup (0, \infty) \subseteq (-\infty, \infty) = D_g$, gf exists. $R_{gf} = [-4, \infty)$. (ii) $f^{-1} : x \mapsto 2 + \frac{1}{x}$, x < 0. (iv) $1 - \sqrt{2}$.
- 2. (a) i. Since $R_g = [-\frac{1}{5}, \infty) \not\subseteq [0, \infty)$, fg does not exist. ii. $R_f = (-2, 1]$. iii. $R_{gf} = [-\frac{1}{5}, \frac{11}{45})$.
 - (b) i. The horizontal line y = -1 cuts the graph of y = h(x) at more than one point. Hence h is not one-one. Therefore h⁻¹ does not exist.
 ii. D_{h⁻¹} = R_h = [-4, 0].
- 3. (i) $f^{-1}(x) = e^{-x} + 2.$ $D_{f^{-1}} = R_f = [0, \infty).$ $R_{f^{-1}} = D_f = (2, 3].$ (iii) x = 2.12.
- 4. (ii) All horizontal line $y = k, k \in \mathbb{R}$ cuts the graph of y = f(x) at most once. Hence f is one-one and f has an inverse.

$$f^{-1}x :\mapsto \begin{cases} \frac{2\cos^{-1}x}{\pi}, & 0 < x \le 1\\ 1 - x, & -1 \le x \le 0 \end{cases}$$

(iii) $0 \le x \le 1$.

(iv)
$$R_{fg} = [-1, 0].$$

- 5. (i) $h^{-1}(x) = \ln x + 1.$ $D_{h^{-1}} = R_h = [e^{-3}, \infty).$
 - (ii) Since $R_g = [-1, \infty) \subseteq [-2, \infty) = D_h, hg$ exists.
 - (iii) $x = \sqrt{2 + \ln 5}$. (iv) $R_{hg} = [e^{-2}, \infty)$.
- 6. (i) $-\ln\frac{8}{3}$. (ii) $f^{-1}(x) = \ln(2 - \frac{x}{3})$.

(iii)
$$R_{fg} = (3, 6 - 3e^{-a}].$$

- 7. (i) $R_g = (-\infty, 1] \subseteq (-\infty, 4]$ so fg exists.
 - (ii) $fg(x) = \frac{x}{3} 2$.
 - (iii) A: Scale by the factor of $\frac{1}{3}$ parallel to the *x*-axis. B: Translate by 2 units in the negative *x*-direction.
 - (iv) $h: x \mapsto \ln(-x+4), \quad x \in \mathbb{R}, x < 4.$