1. [RVHS 2020 Promos Q12 (modified)]

(a) Use the substitution
$$x = \cos \theta$$
 to show that $\int \sqrt{1-x^2} dx = \frac{1}{2} \left(x \sqrt{1-x^2} - \cos^{-1} x \right) + c$, where c is an arbitrary constant. [4]

(b) Find
$$\int 2\sin kx \sin x \, dx$$
, where $k \in \mathbb{Z}, k \ge 2$. [3]

(c) (i) Show that
$$1-x$$
 can be expressed as $A(2x-3)+B$, where A and B are constants to be determined. [1]

(ii) Hence find
$$\int \frac{1-x}{x^2-3x+1} dx$$
. [4]

2. [TMJC 2020 Promos Q2]

By using the substitution
$$u = 1 + t^3$$
, find $\int_0^1 \frac{t^5}{(1+t^3)^3} dt$ without using a calculator. [6]

3. [TMJC 2020 Promos Q5]

(a) Find
$$\int \frac{e^x}{\left(1+2e^x\right)^3} dx.$$
 [2]

(b) Find
$$\int \frac{x-1}{1+4x^2} dx$$
. [3]

(c) Find
$$\int x(\ln x)^2 dx$$
. [4]

4. [VJC 2020 Promos Q2]

(a) Find

(i)
$$\int \frac{1}{x^2 + 2x + 5} dx$$
, [2]

(ii)
$$\int \frac{(\ln x)^3}{x} \, \mathrm{d}x.$$
 [2]

(b) Find the exact value of
$$\int_0^{\frac{\pi}{2}} x \cos x \, dx$$
. [3]

5. [YIJC 2020 Promos Q7]

(a) Find
$$\int x \tan^{-1}(2x^2) dx$$
. [3]

(b) Use the substitution
$$x = \sin \theta$$
 to find the exact value of $\int_{0.5}^{1} x^2 \sqrt{1 - x^2} \, dx$. [4]

6. [YIJC 2020 Promos Q9]

The region R is bounded by the curve $y = \frac{x}{\sqrt{a^2 - x^2}}$, where a > 0, the x-axis and the line $x = \frac{a}{2}$. Find in terms of a,

(i) the exact area of the region
$$R$$
, [4]

(ii) the exact volume of the solid obtained when R is rotated through 2π radians about the y-axis. [5]

7. [NJC 2020 Promos Q10]

A curve C has parametric equations

$$x = t^3$$
, $y = 1 + \sqrt{1 - t^2}$ where $-1 \le t \le 1$.

- (i) Sketch C, labelling clearly the axial intercept. [2]
- (ii) Use the substitution $t = \cos \theta$ to find the exact value of $\int_0^{\frac{\sqrt{3}}{2}} t^2 \sqrt{1 t^2} dt$. [5]
- (iii) Hence, find the exact area bounded by C, the x-axis and the lines x = 0 and $x = \frac{\sqrt{27}}{8}$.

Answers

- 1. (b) $\frac{5\sqrt{6}}{3}$ units.
 - (c) $\frac{1}{k-1}\sin(k-1)x \frac{1}{k+1}\sin(k+1)x + c$.
 - (d) i. $A = -\frac{1}{2}, B = -\frac{1}{2}$.

ii.
$$-\frac{1}{2}\ln|x^2 - 3x + 1| - \frac{1}{2\sqrt{5}}\ln\left|\frac{2x - 3 - \sqrt{5}}{2x - 3 + \sqrt{5}}\right| + c$$
.

- $2. \ \frac{1}{24}.$
- 3. (a) $-\frac{1}{4(1+2e^x)^2} + c$.
 - (b) $\frac{1}{8}\ln(1+4x^2) \frac{1}{2}\tan^{-1}(2x) + c$.
 - (c) $(\ln x)^2 \left(\frac{x^2}{2}\right) (\ln x) \left(\frac{x^2}{2}\right) + \frac{x^2}{4} + c$.
- 4. (a) i. $\frac{1}{2} \tan^{-1} \left(\frac{x+1}{2} \right) + c$.
 - ii. $\frac{(\ln x)^4}{4} + c$
 - (b) $\frac{\pi}{2} 1$.
- 5. (a) $\frac{x^2}{2} \tan^{-1}(2x^2) \frac{1}{8}\ln(1+4x^4) + c$.
 - (b) $\frac{1}{8} \left(\frac{\pi}{3} + \frac{\sqrt{3}}{8} \right) + c$.
- 6. (i) $a\left(1 \frac{\sqrt{3}}{2}\right)$.
 - (ii) $\pi a^2 \left(\frac{\pi}{6} \frac{\sqrt{3}}{4} \right)$.
- 7. (ii) $\frac{\sqrt{3}}{64} + \frac{\pi}{24}$.
 - (iii) $\frac{27\sqrt{3}}{64} + \frac{\pi}{8}$.