8 Answer the whole of this question on a sheet of graph paper.

A particle moves in a straight line so that at time t seconds, its distance y metres from a fixed point, O, is given by $y=t+\frac{32}{t+2}-8$.
The following table gives some corresponding values of t and y.

t (seconds)	0	1	2	3	4	5	6	8	10	12	14
y (metres)	8	3.67	2	1.4	1.33	1.57	2	3.2	4.67	k	8

(a) Calculate the value of k.
(b) Using a scale of 1 cm to represent 1 second, draw a horizontal t-axis for $0 \leq t \leq 14$.

Using a scale of 2 cm to represent 1 metre, draw a vertical y-axis for $0 \leq y \leq 8$.
On your axes, plot the points given in the table and join them with a smooth curve. [3]
(c) Explain the significance of the y-intercept.
(d) Find the time when the particle is nearest to the fixed point, O.
(e) Mark and label P, the point on your graph when the particle is 4 metres from the fixed point, O and moving away from O.
(f) Find the length of time for which the particle is less than or equal to 2.5 metres from the fixed point, O.
(g) By drawing a tangent, find the gradient of the curve at $t=6$.
(h) The equation $t+\frac{32}{t+2}=13-\frac{1}{4} t$ can be solved by drawing a straight line on the same axes.
(i) Draw this line for $0 \leq t \leq 14$.
(ii) Write down the t-coordinates of the points where the line intersects the curve.

