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13 Complex numbers

Introduction: extensions of number systems

Our first mathematical encounter is likely with the natural numbers,
N = {0, 1, 2, . . .}. We can use them to count, and they are well suited for
the operations of addition and multiplication. Given any two natural
numbers, the sum or product of them will be a natural number too.

Subtraction, unfortunately, is not so well defined at the moment; we have
to subtract a smaller number from a larger number in order to stay in
the natural numbers. To overcome this problem we can define negative
numbers, and together they form the integers, Z = {0,±1,±2, . . .}. We
say that the integers are an extension of the natural numbers because the
natural numbers still keep all the important properties from before but the
inclusion of the new negative numbers allow for more to be done.

In a similar vein, the problem of dividing numbers which leave remainders
lead us to extend the integers to the rational numbers
Q = {a

b
: a, b ∈ Z, b 6= 0}.

The study of geometry and change often leads us to the fundamental
constants π and e, both of which are irrational. Square roots are also
limited to the perfect squares. Thus, we extend the rational numbers and
often work in the real numbers, R, in our study. It is instructive to visualize
them on a number line, and now

√
x exists as long as x is non-negative.

Complex numbers, C, came about from imagining if square roots of negative
numbers are allowed. And despite considerable resistance to the idea when
it was first introduced, they allowed for breakthroughs in the solving of
cubic equations. Decades down the road this seemingly theoretical and
abstract construction has also found applications in the study of real world
phenomena such as in electrical engineering and quantum mechanics.

Square roots of negative numbers do not exist in the real number system.
The idea of the complex number is to introduce a new number, i, thought
of as

√
−1. Every new number (called complex) is then in the form x+ yi,

where x, y ∈ R. This extends our real numbers because every real number,
for example,

√
2, is also a complex number of the form

√
2 + 0i.
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13.1 Cartesian form arithmetic

Terminology

We will often denote complex numbers with the letters z and w, and write
them in the forms z = x+ yi and w = a+ bi. This is called the cartesian
form.

x is then called the real part of z, denoted Re(z), while y is called the
imaginary part of z, denoted Im(z).

For example, for the complex number z = 2− 3i, Re(z) = 2 and Im(z) = −3.

Remark: Im(z) = −3 and Im(z) 6= −3i.

Powers of i

Because i can be thought of as
√
−1, we have i2 = −1 . Then i3 = i2, i = −i

and i4 = (i2)2 = 1.

Concept check 1: what is i2021?

Addition and subtraction

Addition and subtraction of complex numbers is pretty intuitive: we add
the real and imaginary parts accordingly. This behaves just like treating i
as our usual algebraic unknown. For example,

(2− i) + (3 + 4i) = 5 + 3i

(1 + 2i)− (3− 5i) = −2 + 7i

Multiplication

Multiplication of complex numbers can be thought of as our usual algebraic
expansion, except that i2 = −1 allows us to further simplify our answer. For
example,

(2 + i)(3 + 4i) = 6 + 8i+ 3i+ 4i2

= 6 + 11i− 4

= 2 + 11i
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Complex conjugates

Similar to some of our previous work on surds, the idea of the conjugate
helps in the manipulation of complex numbers. Given a complex number
z = x+yi, its complex conjugate, denoted by z∗, is given by z∗ = x− yi ,
where we switch the sign of the imaginary part.

The gives rise to a few useful formulas:

z + z∗ = 2x = 2Re(z) (1)

z − z∗ = 2yi = 2Im(z)i (2)

zz∗ = x2 + y2 (3)

In particular, formula (3) will be used in the next section on complex division.

Concept check 2: derive the 3 formulas above.
Concept check 3: what can we say about z if z = z∗?

Division

To carry out complex division, we make use of the complex conjugate in
a way similar to how we “rationalize surds”. Formula (3) in the previous
section then simplifies the denominator into a real number, enabling the
final result to be back into our cartesian form x+ yi.

2 + i

3− 4i
=

2 + i

3− 4i
× 3 + 4i

3 + 4i

=
2 + 11i

32 + 42

=
2 + 11i

25

=
2

25
+

11

25
i
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13.2 Solving equations

Linear equations

In the real numbers, to solve a linear equation like 3x − 5 = 4, we move
terms around until x is the subject of the equation. This can also be done
when handling linear equations involving complex numbers.

Example 1. Solve the equation (2 + 3i)z + 8 + 2i = 1− i.

Solution 1.

(2 + 3i)z = 1− i− (8 + 2i)

(2 + 3i)z = −7− 3i

z =
−7− 3i

2 + 3i

=
−7− 3i

2 + 3i
× 2− 3i

2− 3i

=
−23 + 15i

13
.

Quadratic equations

In the real numbers, the discriminant b2 − 4ac gives us a condition on the
number of real roots a quadratic equation has. In complex numbers, we can
now take square roots of negative numbers so all quadratic equations will
have 2 complex roots (including multiplicity). The quadratic formula we
know still applies and is especially useful.

Example 2. Solve the equation 2z2 − 2z + 5 = 0.

Solution 2.

z =
−b±

√
b2 − 4ac

2a

=
−(−2)±

√
(−2)2 − 4(2)(5)

2(2)

=
2±
√
−36

4

=
2± 6i

4

=
1± 3i

2
.
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Comparing real and imaginary parts

For two complex numbers to be equal, both the real and imaginary parts
must be the same. Thus one complex equation can actually help us solve
for two real unknowns.

Remark: Comparison only works if all our variables are real. For example,
we cannot do comparison for the equation z+2zi = 3+4i where z is complex
(why not?). On the other hand, if x, y ∈ R, we can compare for the equation
x+ 2yi = 3 + 4i to get x = 3, y = 2.

When the strategies outlined in examples 1 and 2 do not work, we can make
use of the comparison technique. Since it only works for real unknowns, we
can let z = x+ yi, where x and y are real.

Example 3. Solve the equation −18iz + zz∗ = −56− 90i.

Solution 3. Let z = x+ yi, x, y ∈ R.

−18i(x+ yi) + (x+ yi)(x− yi) = −56− 90i

−18xi+ 18y + x2 + y2 = −56− 90i

(y2 + 18y + x2)− 18xi = −56− 90i

Comparing imaginary parts, −18x = −90 so x = 5.
Substituting x = 5 and comparing real parts,

y2 + 18y + 25 = −56

y2 + 18y + 81 = 0

(y + 9)2 = 0

y = −9

Hence z = 5− 9i.

Kelvin Soh math-atlas.vercel.app Page 5

https://math-atlas.vercel.app


Topic 13 Complex numbers notes 2021

13.3 The conjugate root theorem

Two additional theorems

In our previous study we may have observed an interesting phenomena: that
linear equations (highest power of 1) tend to have one solution, quadratics
tend to have two, cubic equations tend to have three and so on. That was
not always the case when working with real numbers, but working with
complex numbers give us the following beautiful result:

Theorem (Fundamental Theorem of Algebra). The polynomial equation
azn + bzn−1 + . . . = 0, a 6= 0 has exactly n complex roots (including
multiplicity).

One approach to solve polynomial equations uses the factor theorem:

Theorem (Factor Theorem). If z = α is a root of a polynomial f(z) (i.e.
f(α) = 0), then (z − α) is a factor of f(z).

The conjugate root theorem

The factor theorem allows us to break polynomials up one root/factor at a
time. This can be quite tedious when solving polynomial equations of large
order. Working with complex numbers can potentially speed things up via
the conjugate root theorem.

Theorem (Conjugate Root Theorem). Let P (z) be a polynomial with
real coefficients. If z = a+ bi is a root of P (z) = 0, then its complex
conjugate z∗ = a− bi is also a root.

Remark: We can apply the conjugate root theorem to a polynomial like
z2 − z + 3 because all the coefficients are real, even though the roots are
complex. Meanwhile, the conjugate root theorem does not apply to a
polynomial like z2 − 2iz + 3 + 4i.
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Expansion of factors from conjugate roots

The following is a derivation of a useful identity to obtain quadratic factors.
In the first case, we make use of the (a+ b)(a− b) = a2 − b2 formula.

(z − a+ bi)(z − a− bi) = (z − a)2 − (bi)2

= z2 − 2a+ a2 + b2

We will be working with complex numbers in polar form in section 13.4. The
following is a similar derivation of the above result in polar form making
use of the z + z∗ = 2r cos(θ) formula.

(z − reiθ)(z − re−iθ) = z2 − reiθz − re−iθz + reiθre−iθ

= z2 − rz(reiθ + re−iθ) + r2

= z2 − (2r cos θ)z + r2

Solving polynomial equations cubic and above

We will illustrate the use of the conjugate root theorem in solving polynomial
equations with an example.

Example 4. Consider the equation 2z3 − z2 + 14z + 30 = 0.

(a) Verify that 1 + 3i is a root of the equation.

(b) Hence solve the equation.

Solution 4.
(a) We first evaluate (1 + 3i)2 and (1 + 3i)3.

(1 + 3i)2 = 1 + 6i+ 9i2

= −8 + 6i

(1 + 3i)3 = (1 + 3i)(−8 + 6i)

= −8 + 18i2 − 24i+ 6i

= −26− 18i

Substituting z = 1 + 3i into the equation

LHS = 2(−26− 18i)− (−8 + 6i) + 14(1 + 3i) + 30

= (−52− 36i) + (8− 6i) + (14 + 42i) + 30

= 0

= RHS

Hence 1 + 3i is a root of the equation.
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(b) Since the equation has only real coefficients, by the conjugate root
theorem, 1− 3i is also a root.

By the factor theorem, both z − (1 + 3i) = (z − 1− 3i) and (z − 1 + 3i) are
factors of 2z3 − z2 + 14z + 30.

Expanding the two factors:

(z − 1− 3i)(z − 1 + 3i) = z2 − 2z + 10

We can then obtain the remaining factor either by long division or
comparing coefficients.

2z + 3

z2 − 2z + 10
)

2z3 − z2 + 14z + 30
− 2z3 + 4z2 − 20z

3z2 − 6z + 30
− 3z2 + 6z − 30

0

Let 2z3 − z2 + 14z + 30
= (z2 − 2z + 10)(az + b)

Comparing coefficients:

z3 : a = 2

z0 : 10b = 30

b = 3

Hence the final factor is (2z + 3).

(z − 1− 3i)(z − 1 + 3i)(2z + 3) = 0.

z = 1 + 3i, z = 1− 3i or z = −3
2
.
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13.4 Argand diagram and polar form

The Argand diagram

A useful visualization of the real numbers is the number line: the number 0
is in the middle, and the line extends infinitely in both directions.

We can think of the complex numbers as extending the real number line into
a complex number plane. We then can place each complex number with the
real part on the x-axis and the imaginary part on the y-axis. For example,
the complex number 3 + 4i can be represented by the point (3, 4) on the
complex plane. We call such a diagram an Argand diagram.
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The polar (modulus-argument) form

So far we have worked with the cartesian form x+ yi of a complex number.
On an Argand diagram that corresponds to the x- and y-coordinates.

Another way to understand complex numbers is called the polar (or
modulus-argument) form. Instead of focusing on the x- and y-
coordinates, we focus on two quantities called the modulus, denoted by |z|
or r, and the argument, denoted by arg(z) or θ.

As seen on the diagram above, the modulus, r, refers to the distance from
the point representing the complex number to the origin. Meanwhile, the
argument, θ, refers to anticlockwise angle the positive x-axis makes with
the line from the origin to the point.

It turns out that working with the polar form greatly simplifies complex
multiplication, division and exponentiation (powers) and leads to many
useful and beautiful results. But before that, we will first look at the three
forms of a complex number and learn how to convert from one to another.
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Three forms of a complex number

� Cartesian form z = x+ yi.

� Trigonometric form z = r(cos θ + i sin θ).

� Exponential form z = reiθ.

The figure in the previous page shows that x, y and r, θ are related by a
right angle triangle, giving rise to the following formulas:

Converting cartesian form to polar form

To calculate |z| = r from x and y, |z| = r =
√
x2 + y2.

Meanwhile, arg(z) = θ is related to x and y by tan θ = y
x
.

Finding θ is more complicated than simply taking tan−1, however, due
to the many solutions of the equation from the different quadrants.
Thus, we take a two step approach in finding the argument. We first
find the basic angle, α, and consider the signs of x and y to determine θ.

α = tan−1
∣∣∣y
x

∣∣∣ , arg(z) = θ =


α if x > 0, y > 0

π − α if x < 0, y > 0

−(π − α) if x < 0, y < 0

−α if x > 0, y < 0
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Example 5. (A) Convert z = −1 + i into polar form.

Solution 5. r =
√

(−1)2 + (1)2 =
√

2.

α = tan−1 | − 1| = π
4
.

Since we are in the second quadrant, θ = π − α = 3π
4

.

Hence z =
√

2
(
cos 3π

4
+ i sin 3π

4

)
=
√

2ei
3π
4 .

Converting polar form to cartesian form

To calculate x and y from r and θ instead, we note that x is the adjacent
side of our right angle triangle and y is the opposite side. Trigonometry
then gives us the formulas x = r cos θ and y = r sin θ.

In fact, we can actually view the trigonometric form of a complex number
z = r(cos θ + i sin θ) as an intermediate between the exponential form
z = reiθ and the cartesian form z = x + yi. Comparing the real and
imaginary parts of the cartesian and trigonometric form leads us to the
formulas above.

Example 5. (B) Convert z = 2ei
2π
3 into polar form.

Solution 5.

2ei
2π
3 = 2

(
cos

(
2π

3

)
+ i sin

(
2π

3

))
= 2

(
−1

2
+

√
3

2

)
= −1 +

√
3i.
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13.5 Polar form arithmetic

In working with complex numbers in cartesian form, we may have noticed
that while addition and subtraction is pretty straightforward, the mechanics
of multiplication, division and exponentiation (taking powers) can get pretty
tedious to execute. It turns out that using the polar form greatly simplifies
these operations.

Arithmetic in exponential form

Given our previous work with indices and exponentials, working with complex
numbers in exponential form should feel natural and very similar. Meanwhile,
complex conjugates are reflections of each other about the Re(z)-axis on the
Argand diagram. This means that the modulus stays the same but the sign
of the argument is flipped.

wz =
(
r1e

iθ1
)
·
(
r2e

iθ2
)

= (r1r2)e
i(θ1+θ2)

w

z
=
r1e

iθ1

r2eiθ2
=
r1
r2
ei(θ1−θ2)

zn =
(
reiθ
)n

= rneinθ

z∗ =
(
reiθ
)∗

= re−iθ

Modulus and argument formulas

The formulas above can be broken down into formulas relating to just the
modulus or the argument themselves.

|wz| = |w| |z|∣∣∣w
z

∣∣∣ =
|w|
|z|

|zn| = |z|n

|z∗| = |z|

arg (wz) = arg (w) + (z)

arg
(w
z

)
= arg (w)− (z)

arg (zn) = n arg (z)

arg (z∗) = − arg (z)
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Principal values

The problem when working with angles/arguments is that multiple values
can refer to the same angle when we go extra rounds (for example, visualize
the angle described by π

2
and 5π

2
). It is thus useful to decide what values

are considered the “simplest” form we should leave our answers in.

For our purposes we will typically leave our arguments in the principal
range −π < θ ≤ π. Any values outside this range can be converted by
adding/subtraction 2kπ (k extra rounds), where k ∈ Z. This can be seen in
the last two steps of the following example.

Example 6. Evaluate

((
e−

π
12
i
)7
e−

5π
6
i

e
π
3
i

)∗

.

Solution 6. ((
e−

π
12
i
)7
e−

5π
6
i

e
π
3
i

)∗

=

(
e−

7π
12
ie−

5π
6
i

e
π
3
i

)∗

=

(
e−

7π
12
i+(− 5π

6
i)

e
π
3
i

)∗

=

(
e−

17π
12
i

e
π
3
i

)∗

=
(
e−

17π
12
i−π

3
i
)∗

=
(
e−

7π
4
i
)∗

= e
7π
4
i

= e(
7π
4
−2π)i

= e−
π
4
i
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13.6 Real and purely imaginary numbers

Complex numbers have two parts: the real part and the imaginary part. A
number is real if its imaginary part is 0. Meanwhile, a number is purely
imaginary if its real part is 0. These numbers can be located on an Argand
diagram as shown below.

The following table lists out the conditions for a number to be real/purely
imaginary. The extra k, k ∈ Z in the conditions account for multiple answers
due to arguments outside the principal range. kπ refers to k extra half-rounds
while 2kπ refers to k extra full rounds around the Argand diagram.

Condition Cartesian form, x+ yi Polar form, reiθ

Real y = 0 θ = kπ, k ∈ Z

Real and positive y = 0, x > 0 θ = 2kπ, k ∈ Z

Real and negative y = 0, x < 0 θ = π + 2kπ, k ∈ Z

Purely imaginary x = 0 θ = π
2

+ kπ, k ∈ Z
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Example 7. Find the three smallest positive integers n such that(
e−

π
12
i
)n

is purely imaginary.

Solution 7.
arg
((
e−

π
12
i
)n)

= n arg
(
e−

π
12
i
)

= −nπ
12
.

For it to be purely imaginary,

−nπ
12

=
π

2
+ kπ

−nπ = 6π + 12kπ

n = −6− 12k

The smallest positive integers n correspond to when k = −1,−2,−3.

Hence the three smallest positive integers n = 6, 18, 24.

13.7 Miscellaneous examples, techniques

A consolidated example

The following is an example combining some of the techniques discussed in
this chapter.

Example 8. The complex number z is given by z = 3 + bi, where b is
a real number.

(a) Find the possible values of b if
z2

z∗
is real.

For the rest of the question, it is further given that b > 0.

(b) Find the smallest integer value of n such that |zn| > 1000.

(c) For the value of n found in (b), find the values of |zn| and arg(zn)
such that −π < arg(zn) ≤ π.

(d) On a single Argand diagram mark out the points A,B,D,D and E

representing the complex numbers z,
z2

z
, z∗,

18

z
and

z2

6
respectively.
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Solution 8.
(a) We first evaluate z2

z∗
in terms of b.

z2

z∗
=

(3 + bi)2

3− bi

=
9− b2 + 6bi

3− bi
· 3 + bi

3 + bi

=
3(9− b2)− 6b2 + ((9− b2)b+ 18b) i

9 + b2

Since z2

z∗
is real, its imaginary part is 0.

(9− b2)b+ 18b = 0

b
(
9− b2 + 18

)
= 0

b(27− b2) = 0

Hence b = 0 or b = ±
√

27 = ±3
√

3.

(b) Since b > 0, b = 3
√

3.

|zn| > 1000∣∣∣3 + 3
√

3i
∣∣∣n > 1000(√

32 + (3
√

3)2
)n

> 1000

6n > 1000

n ln 6 > ln 1000

n > 3.8553

Hence the smallest integer value of n = 4.

(c) For z = 3 + 3
√

3i and n = 4,

|zn| = |z|n

= 64

= 1296.
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arg(z) = tan−1

(
3
√

3

3

)
=
π

3
arg(zn) = n arg(z)

≡ 4
(π

3

)
− 2π

= −2π

3
.

(d) z = 6ei
π
3 ,

z2

z∗
=

36ei
2π
3

6e−i
π
3

= 6eiπ, z∗ = 6e−i
π
3 ,

18

z
=

18

6ei
π
3

= 3e−i
π
3 ,

z2

6
=

36ei
2π
3

6
= 6ei

2π
3 .

Conjugate formulas in polar form

Now that we have learned about the polar form, we can update formulas (1)
to (3) in section 13.1 to reflect polar notation.

z + z∗ = 2x = 2Re(z) = 2 cos θ (1∗)

z − z∗ = 2yi = 2Im(z)i = 2i sin θ (2∗)

zz∗ = x2 + y2 = |z|2 (3∗)
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The half-angle “trick”

In section 13.5 we have seen that the polar form works exceedingly well
when handling multiplication, division and exponentiation. However, unlike
the cartesian form, addition and subtraction is not straightforward to carry
out at all and any general approach will probably have to be done using the
trigonometric form and trigonometric formulas.

For the special case of adding/subtracting by 1 (after factoring out |z|),
there is a trick that can be used to greatly simplify the process. There are
two key “tricks” we will apply: (a) we will split an exponential complex

number eiθ into “half-angles”, eiθ = ei
θ
2 ei

θ
2 ; (b) we will think of 1 as ei0 and

split it into conjugates, 1 = ei0 = ei
θ
2 e−i

θ
2 . Thereafter, we observe that ei

θ
2

and ei
θ
2 are conjugates. The formulas (1∗) and (2∗) on the previous page

will enable further simplification.

eiθ + 1 = ei
θ
2 ei

θ
2 + ei

θ
2 e−i

θ
2

= ei
θ
2

(
ei

θ
2 + e−i

θ
2

)
= ei

θ
2

(
2 cos θ

2

)
=
(
2 cos θ

2

)
ei

θ
2

eiθ − 1 = ei
θ
2 ei

θ
2 − ei

θ
2 e−i

θ
2

= ei
θ
2

(
ei

θ
2 − e−i

θ
2

)
= ei

θ
2

(
2i sin θ

2

)
= ei

θ
2

(
2ei

π
2 sin θ

2

)
=
(
2 sin θ

2

)
ei(

π
2
+ θ

2)

Concept check 4a: for the second example, why did we not leave the final
answer as

(
2i sin θ

2

)
ei

θ
2 (as opposed to the first example with the final answer(

2 cos θ
2

)
ei

θ
2 )?

Concept check 4b: for the second example, how did we arrive at i = ei
π
2 ?

(Hint: use an Argand diagram to visualize it)
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Links and other resources

� Online version of these notes (with less explanation text) is available
at math-atlas.vercel.app/notes/complex

� Computer generated questions: math-atlas.vercel.app/questions

� YouTube channel with worked TYS solutions and revision lectures
tiny.cc/kelvinsoh

� Contact me at kelvinsohmath@gmail.com
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