DEFINITIONS AND THEORY

Probability

- Two events are **mutually exclusive** if $P(A \cap B) = 0$
- Two events are **independent** if $P(A \cap B) = P(A)P(B)$ Alternatively, $P(A \mid B) = P(A)$ if A, B independent.

DRV

•
$$\operatorname{Var}(X) = E(X^2) - (E(X))^2$$

Binomial

- (the number of trials, n, is fixed)
- (each trial results in only two outcomes, "success" or "failure")
- The probability of success, *p*, is **the same** for each trial
- Each trial is **independent** from each other

Normal

- E(aX b) = aE(X) b
- $\operatorname{Var}(aX b) = a^2 \operatorname{Var}(X)$
- $\operatorname{Var}(X Y) = \operatorname{Var}(X) + \operatorname{Var}(Y)$
- For $X_1 + X_2$, 2X 3Y, \overline{X} to be normally distributed, X_1, X_2, Y must be **independent**
- Characteristics of a normal distribution:
 - Almost all observations lie between $\mu 3\sigma$ and $\mu + 3\sigma$.
 - Symmetrical about μ .
 - Has one mode at μ .

Sampling

- The **population** includes all members of a study
- A sample is a subset of the population
- A sample if **random** if each member of the population has the same probability of being selected into the sample.
- μ : population mean
- \overline{x} : sample mean (also used as the unbiased estimate of population mean)
- σ : population standard deviation
- σ^2 : population variance
- s^2 : unbiased estimate of population variance
- $s^2 = \frac{n}{n-1}$ (sample variance)

Hypothesis Testing

- A null hypothesis, H_0 , is an assertion about a population that we would like to test
- An alternative hypothesis, H_1 , is a contrasting hypothesis that will be tested against H_0
- \overline{x} and z are our test statistic
- The critical region is the set of values for the test statistic such that H_0 is rejected
- *** The **critical value** is the cut-off value for the critical region
- The level of significance is the probability that our hypothesis test concludes that H_1 is true when in fact H_0 is true
- The **p-value** is the
 - probability that, under H_0 , we obtain a test statistic less/more extreme/more than the value obtained from our sample
 - the least level of significance that will result in the rejection of H_1
- If n is large, by the Central Limit Theorem, the sample mean \overline{X} is normally distributed approximately so it is **not** necessary to assume anything about the distribution of X.
- If n is small, it is necessary to assume that X is normally distributed.