BASIC MASTERY

- 1 Use an inequality to represent a relationship involving the given variable in each statement.
 - (a) The speed of a car, x km/h, exceeds the speed limit of 80 km/h.

(b) The number of days in February, *d*, is less than 30.

(c) The minimum score for an A1 grade is 75 marks. Daniel scored *s* marks and he received an A1 grade.

(d) To qualify for a sports meet, a sprinter has to complete a 100 m race in at most 13 seconds. Jack completed the race in t seconds and did not qualify for the sports meet.

- (e) The highest temperature recorded in Singapore for 2019 was 35 °C on 21 September. The temperature on one day in Singapore in 2019 was T °C.
- 2 Fill in each box with an inequality sign.

(a) If
$$a < b$$
, then $a + 3$ $b + 3$.

(c) If
$$e > f$$
, then $6e$ 6 f .

(e) If
$$w > x$$
, then $\frac{w}{2}$ $\frac{x}{2}$

(b) If
$$c \ge d$$
, then $c - 9$ $d - 9$.

(d) If
$$g \le h$$
, then $-g$ $-h$.

(f) If
$$y \ge z$$
, then $-2y$ $-2z$.

INTERMEDIATE

- 3 Use an inequality to represent a relationship involving the given variable in each statement.
 - (a) Three times of a is greater than 4.
 - **(b)** A quarter of b is 2 less than 9.
 - (c) The sum of c and 20 is a positive number.
 - (d) The product of 7 and d is a non-negative number.
- 4 Given that x < y, write down the relationship between

(a)
$$3x - 2$$
 and $3y - 2$,

(b)
$$-x + 8$$
 and $-y + 8$,

(c)
$$-4 + 9x$$
 and $-4 + 9y$,

(d)
$$4-3x$$
 and $4-3y$.

ADVANCED

Given that a > b and c > d, write down the relationship between

(a)
$$a + c$$
 and $a + d$,

(b)
$$a + c$$
 and $b + d$.

- 6 State if each of the following statements is always true. If it is not, give a counterexample.
 - (a) If $x \le 0$, then $x^2 > 0$.

(b) If y < 0, then $y^2 > y$.

(c) If c > 0, then $\frac{1}{c} < c$.

(d) If d < 0, then $\frac{1}{d} < d$.

- 3 State if each of the following statements is always true. If it is not, give a counterexample.
- (a) If a > 0 and b > 0 then $\frac{a}{b} > 0$.
 - **(b)** If a > b, then $\frac{a}{b} > 0$.

(c) If a > b, then $\frac{1}{a} > \frac{1}{b}$.

(d) If $a^2 < b^2$, then $\frac{1}{a} > \frac{1}{b}$.

BASIC MASTERY

- Represent the solution of each of the following inequalities on a number line.
 - (a) w > 2

(b) x < 5

(c) $y \ge -7$

(d) $z \le -4\frac{3}{4}$

- 2 Solve each inequality and represent the solution on a number line.
 - (a) a-7>14

(b) b-9<5

(c) 2*c* ≥ −4

(d) $\frac{d}{4} < 2$

(e) $-\frac{e}{6} > 0.5$

(f) $-3f \le -54$

INTERMEDIATE

3 Solve the following inequalities.

(a)
$$3a-5>2(a+11)$$

(b)
$$5b-2 \le 2(4b-3)$$

(c)
$$3c - \frac{c}{2} > 12$$

(d)
$$\frac{d}{3} + 2 \le 3d + 6$$

(e)
$$\frac{e+1}{2}$$
 < 12(e+1)

(f)
$$\frac{2f+4}{3} + \frac{f+1}{5} \le 1$$

(g)
$$\frac{2g+1}{5} - \frac{g-3}{2} < \frac{3g}{4}$$

(h)
$$\frac{3h+1}{3} + \frac{1-h}{2} \le 4 + \frac{h+1}{6}$$

4 Find the largest integer x that satisfies each inequality.

(a)
$$5(x-7) \le 3(x-4)$$

$$\frac{3x-2}{2} < \frac{2(x-3)}{3}$$

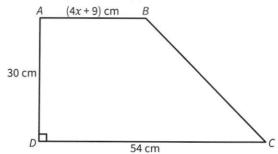
5 Find the smallest integer x that satisfies each inequality.

(a)
$$2(3-4x) \le 5x-30$$

(b)
$$\frac{7}{2}(x+3) > 3x+4$$

- Given the inequality $\frac{x-11}{2} < \frac{4-2x}{5}$, find the greatest possible value of x if x is
 - (a) a prime number,

(b) a multiple of 5,


(c) a perfect square,

- (d) a decimal with 3 significant figures.
- Onsider the first four terms of the number sequence: 5, 13, 21, 29 ...
 - (a) Find an expression, in terms of n, for the nth term of the sequence.
 - (b) Using your answer in (a), find
 - (i) the smallest value of n such that the nth term in the sequence is at least 105,
 - (ii) the greatest value of n such that the nth term in the sequence is at most 423.

- \nearrow Bernard intends to buy a printer and n toner refills. The printer costs \$176 and each toner refill costs \$58.
 - (a) Find an expression, in terms of n, for the total cost of the items.

(b) Bernard's budget is \$370. Using your answer in **(a)**, form an inequality and find the maximum number of toner refills Bernard can purchase.

9 The diagram shows trapezium ABCD, where AB // CD and \angle ADC = 90°.

(a) Express the area of ABCD in terms of x.

(b) If the total area of *ABCD* is more than $1200 \, \text{cm}^2$, form an inequality in x to represent the above information.

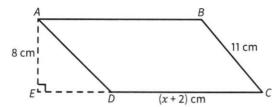
(c) Given further that x is an integer, find the minimum length of AB.

ADVANCED

- 100 The size of each interior angle in a regular n-sided polygon is not more than 150°.
 - (a) Form an inequality in terms of n.
 - **(b)** Find the maximum possible value of n.
- 11 The sum of a set of 5 consecutive positive multiples of 7 is greater than 475. Find the smallest possible number in that set.

A Mathematics competition consists of 50 multiple-choice questions with the following scoring:

Correct answer per attempted question	3 marks
Wrong answer per attempted question	−2 marks
Non-attempted question	0 marks


Damien attempted only 46 questions. To get a distinction, the score has to be at least 100. Find the minimum number of correct answers Damien must obtain to get a distinction.

[2]

(a) Solve the inequality $3x + 8 \le 2(x - 3)$.

.....[2]

- (b) Represent the solution in (a) on the number line.
 - 10 11 12 13 14 15
- 2 ABCD is a parallelogram with an area not more than 130 cm².

(a) Form an inequality in terms of x and solve the inequality.

......[3]

(b) If x is a prime number, find the greatest possible perimeter of ABCD.

.....[2]

	(b)	Hence write down the smallest possible value of y if y is (i) a rational number,	[3]
		(ii) a perfect cube.	[1]
*	She She	ne has \$55 to buy some stationery for an event. buys pens at \$2.50 each and markers at \$4.50 each. buys a total of x pens and markers, and there are 3 more pens than Write down an expression, in terms of x, for the amount of money s (i) the pens,	
		(ii) the markers.	[1]
	(b)	Form an inequality in terms of \boldsymbol{x} and solve the inequality.	[1]
	(c)	Using your answer in (b) , find the minimum possible amount of mo	[3] oney Elaine has left.
			[1]

© Star Publishing Pte Ltd. All rights reserved.

3 (a) Solve the inequality $\frac{3y}{2} - \frac{y-4}{3} \ge 27$.

NEW DISCOVERING MATHEMATICS 2A WORKBOOK