
Qn	Solution	Comments
1	Let x, y, and z denote the number of storybooks, Lego sets and sticker sets bought by Ryan respectively.	
	$x = 2(z+6) \Rightarrow x-2z = 12$	
	x + y + z = 30	
	14.50x + 20.30y + 6.10z = 513.60	
	From GC:	
	x = 14, y = 15, z = 1	
	He bought a total of 14 storybooks, 15 Lego sets, and 1 sticker set.	
2	y $y = x^2 + 12y $	Do not blindly follow the G.C. in curve sketching.
	$y = x^2 + 12x $	$y = x^2 + 12x $
	(-6,36)	<u> </u>
		The shave is a very
	(0,6)	The above is a very common wrong answer. Do
		remember to zoom in/out to
	-13.4 -0.576 $(6,0)$ x	check for correctness. The most notable sign that the
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	above is wrong is to see that
		there are two x-intercepts by
	$\left x^2 + 12x\right + x - 6 > 0$	solving $\left x^2 + 12x \right = 0$
	$\left x^2 + 12x \right > 6 - x$	$\left x\left(x+12\right)\right =0$
		x = 0 or x = -12
	From the graphs, x < -13.4 or $-10.4 < x < -0.576$ or $x > 0.446$	How do you think the graph
	ル	of $y = x^2 + 12x $ is related
		to $y=x^2+12x$? This is a
		good exercise to think about as well.
3(i)		The shape of the graph
	$y = f(x) \qquad y = (0, \lambda + 1)$	$y = 1 + \lambda \cos x$ can be
	$\left(-\frac{\pi}{2},1\right)$ $\left(-\frac{\pi}{2},1\right)$	derived from the GC by choosing an suitable value
	x	for λ (for e.g. $\lambda = 1$).
	Range of $f = (1, 3+1]$.	Also, you need to be
	Domain of $g = (0, \infty)$	mindful of the domain (i.e. (π, π)
	Since range of $f \subseteq domain of g$, $gf exists$.	$D_{\rm f} = \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ where both
		$\frac{\pi}{2}$ and $-\frac{\pi}{2}$ are excluded)

(ii)	Domain of gf = Domain of f = $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$	
	Range of $f = (1, \lambda + 1]$, noting that y $\lambda + 1 > 4 + 1 = 5$ $\therefore \text{ range of } gf = y = g(x)$	It is important to sketch the graph of $y = g(x)$ when you intend to
	$\left[-4, (\lambda+1)^2 - 6(\lambda+1) + 5\right]$	restrict the domain of g to the range of f.
	$= \left[-4, \lambda^2 - 4\lambda \right] \tag{3, -4}$	
4a	$\frac{d}{dx} \left[e^{2x} \tan(3x) \right] = 3e^{2x} \sec^2(3x) + 2e^{2x} \tan(3x)$	
b	$\ln\left(xy^2\right) + \sin^{-1}\sqrt{x} = \frac{\pi}{4}$	A commonly seen wrong answer is
	$\ln x + 2 \ln y + \sin^{-1} \sqrt{x} = \frac{\pi}{4}$	$\left \frac{\mathrm{d}}{\mathrm{d}x} \left(\sin^{-1} \sqrt{x} \right) = \frac{1}{\sqrt{1-x}} \right $
	Differentiate w.r.t x on both sides	Do not forget to apply chain rule here!
	$\frac{1}{x} + \frac{2}{y} \frac{\mathrm{d}y}{\mathrm{d}x} + \frac{1}{\sqrt{1-x}} \left(\frac{1}{2\sqrt{x}} \right) = 0$	Another tip to handle
	$\frac{dy}{dx} = -\frac{y}{2x} - \frac{y}{4\sqrt{x}\sqrt{1-x}}$	$\ln(xy^2)$ is to apply
	1 2 4VXVI-X	Laws of Logarithm to simplify to $\ln x + 2 \ln y$
5(i)	f(15) - 2 15 - 05	before differentiation.
5(i) (ii)	$f(1.5) = 2 - 1.5 = 0.5$ $f(x) = \begin{cases} x^2, & 0 < x \le 1, \\ 2 - x, & 1 < x \le 2, \end{cases}$ $y = -x + \frac{3}{4}$	Graphs drawn should be of a reasonable size
	$2-x, 1 < x \le 2, \qquad y = -x + \frac{\pi}{4}$	and use a darker pencil
	(-0.5, 0.5)	to ensure that your answer could be clearly read.
	(0,0)	Important features including vertices and
		endpoints should be label in coordinate form.
(iii)	$f(x) = -x + \frac{3}{4}$. Consider the line $y = -x + \frac{3}{4}$.	Use the graph in (ii) to help you determine
		where is the intersection. That will
	$ \begin{array}{c c} & \text{KiA=St}^{3} \\ & \text{ExamPaper} \\ & x^{2} + x - \frac{1}{2} = 0 \end{array} $	in turn show you which equation to solve to get
	ExamPaper $x^2 + x - \frac{1}{4} = 0$	the answer.
	$\left(x - \frac{1}{2}\right)\left(x + \frac{3}{2}\right) = 0$	Question asks for an exact answer. That
		means you need to show algebraic
	$x = \frac{1}{2} \text{ or } -\frac{3}{2}$	workings, so do not

_		
	Since, $0 \le x \le 1$, $x = \frac{1}{2}$	merely use GC to compute the roots of $x^2 + x - \frac{3}{4} = 0$ but
-		show the factorisation. Graph also shows only
	•	one intersection point, so you will need to reject one of these 2 answers.
6	Let l cm be the perimeter and A cm ² be the area of the	A common mistake is
	disc at time t s.	to assume that $\frac{dl}{dt} = \frac{dr}{dt}$
	$l = \pi r + 2r \Rightarrow \frac{\mathrm{d}l}{\mathrm{d}r} = \pi + 2$	which is clear not true.
	$A = \frac{1}{2}\pi r^2 \Rightarrow \frac{\mathrm{d}A}{\mathrm{d}r} = \pi r$	Another common mistake is to write
	When $l = 40$ and $\frac{dl}{dt} = 3$	$l = \pi r$ where you only considered the curved part of the semi-circular
	$\Rightarrow r = \frac{40}{\pi + 2} \text{ and } \frac{dr}{dt} = \frac{dr}{dl} \times \frac{dl}{dt} = \frac{3}{\pi + 2}$	disc.
	$\Rightarrow \frac{dA}{dt} = \frac{dA}{dr} \times \frac{dr}{dt}$ $= \pi \left(\frac{40}{\pi + 2}\right) \left(\frac{3}{\pi + 2}\right)$ $= \frac{120\pi}{(\pi + 2)^2}$	
	Hence, the rate of change of the area at $l = 40$ is $\frac{120\pi}{(\pi + 2)^2}$ cm ² /s	
	Alternatively	
	Let l cm be the perimeter and A cm ² be the	
	area of the disc at time t s.	
	$l = \pi r + 2r \Rightarrow \frac{\mathrm{d}l}{\mathrm{d}t} = (\pi + 2) \frac{\mathrm{d}r}{\mathrm{d}t}$	
	When $l = 40$ and $\frac{dr}{dt} = 3$ $\Rightarrow r = \frac{40}{\pi + 2}$ and $\frac{dr}{dt} = \frac{3}{\pi + 2}$	
	$\Rightarrow \frac{\mathrm{d}A}{\mathrm{d}t} = \pi \left(\frac{40}{\pi + 2}\right) \left(\frac{3}{\pi + 2}\right)$	
	$=\frac{120\pi}{\left(\pi+2\right)^2}$	

		T
	Hence, the rate of change of the area at $l = 40$ is $\frac{120\pi}{(\pi + 2)^2}$ cm ² /s	
7(i)	$u_k = 3r^{k-1}$ $\ln u_k = \ln(3r^{k-1}) = \ln 3 + (k-1)\ln r$ Consider $\ln u_k - \ln u_{k-1} = \left[\ln 3 + (k-1)\ln r\right] - \left[\ln 3 + (k-2)\ln r\right]$ $= \left(k - 1 - (k-2)\right)\ln r$ $= \ln r$ Since, r is a constant, $\ln r$ is also a constant. Hence, $\ln u_1, \ln u_2, \ln u_3, \dots$ is an AP.	Using the difference of the first few consecutive terms to show that sequence is arithmetic is wrong, i.e. $u_2 - u_1 = \ln r$ $u_3 - u_2 = \ln r$ You are merely showing that the first 3 terms form an AP!
		Using $\ln u_k = \ln 3 + (k-1) \ln r$ and stating that $a = \ln 3$ and $d = \ln r$ is not accepted as well as we are looking for the distinct nature of arithmetic sequences – any two consecutive terms have a common difference.
(ii)	$\sum_{k=1}^{30} \ln u_k = 45$ $\frac{30}{2} \left(\ln 3 + \ln \left(3r^{29} \right) \right) = 45$	Algebraic errors such as $\ln(3r^{29}) = 29\ln(3r)$ could be costly.
	$\ln(9r^{29}) = 3$ $9r^{29} = e^{3}$ $r = \sqrt[29]{\frac{e^{3}}{9}} = 1.03 \text{ (3 s.f.)}$	
(iii)	Consider $\frac{\frac{1}{u_n}}{\frac{1}{u_{n-1}}} = \frac{u_{n-1}}{u_n} = \frac{3r^{n-2}}{3r^{n-1}} = \frac{1}{r}$. Since $\frac{1}{r}$ is a constant, the sequence is geometric. $\frac{1}{r} = \frac{1}{\sqrt{9}} = \frac{1}{\sqrt{9}}$	When applying the formula to find the sum to infinity of a geometric series, ensure you are substituting the correct first term and common ratio.
	Since $-1 < \frac{1}{r} < 1$, hence, this geometric progression is convergent, and $S_{\infty} = \frac{1/3}{1 - 0.97270} = 12.2$ (3 s.f.)	Always use a 5 s.f. or a more accurate answer in your intermediate working.

8i	$x = \theta - \sin \theta \implies \frac{dx}{d\theta} = 1 - \cos \theta$ $y = 1 - \cos \theta \implies \frac{dy}{d\theta} = \sin \theta$ $\frac{dy}{dx} = \frac{\sin \theta}{1 - \cos \theta}$ $= \frac{2\sin \frac{\theta}{2} \cos \frac{\theta}{2}}{1 - \left(1 - 2\sin^2 \frac{\theta}{2}\right)}$	After obtaining $\frac{\sin \theta}{1-\cos \theta}$, use the given answer as a guide to think about the manipulations that you need to do. We need $\frac{\theta}{2}$ and $\theta = 2\left(\frac{\theta}{2}\right)$ so we
	$=\frac{\cos\frac{\theta}{2}}{\sin\frac{\theta}{2}}$ $=\cot\frac{\theta}{2}$ At $\theta=\pi$, $x=\pi$, $y=2$ $\frac{\mathrm{d}y}{\mathrm{d}x}=\cot\frac{\pi}{2}=0$. Hence, the equation of the tangent at $\theta=\pi$ is $y=2$ $\frac{\mathrm{d}y}{\mathrm{d}x}=\cot\frac{\theta}{2}. \text{ As } \theta\to 0 \text{ and } \theta\to 2\pi \text{ , the tangent lines become steeper.}$ Additionally, the coordinates that correspond to $\theta=0$ and $\theta=2\pi$ are $(0,0)$ and $(2\pi,0)$ respectively. Hence, the tangent line at $(0,0)$ and $(2\pi,0)$ are both vertical lines that are parallel to the y-axis.	can consider double angle formula in the MF26. $\theta = 2\pi$ To investigate the tangents, we can consider the graph of $y = \cot \frac{\theta}{2}$. As $\theta \to 0$ and $\theta \to 2\pi$, $\cot \frac{\theta}{2} \to \infty$ and $\cot \frac{\theta}{2} \to -\infty$ respectively.
ii	$(0,0)$ $(\pi,2)$ $(2\pi,0)$	 Relate the sketch of the graph to the properties discussed in part (i). Hence Tangent at (π,2) is horizontal Tangent at (0,0) and (2π,0) is vertical

iii

The gradient of the line perpendicular to curve C is $-\tan\frac{1}{2}\theta$.

One common error is to carelessly write the gradient of normal to be $\tan \frac{\theta}{2}$ instead.

This line also passes through $\left(\frac{3\pi}{2},0\right)$ and $\left(\theta-\sin\theta,1-\cos\theta\right)$. Thus,

$$\frac{(1-\cos\theta)-0}{\left((\theta-\sin\theta)-\frac{3\pi}{2}\right)} = -\tan\frac{1}{2}\theta$$

To solve the above equation for θ , we can consider **two** methods. **Method A (Algebra):**

$$1 - \cos \theta = -\tan \frac{1}{2}\theta \left(\theta - \sin \theta - \frac{3\pi}{2}\right)$$

$$2\sin^2\frac{1}{2}\theta = \frac{-\sin\frac{1}{2}\theta}{\cos\frac{1}{2}\theta} \left(\theta - \frac{3\pi}{2} - 2\sin\frac{1}{2}\theta\cos\frac{1}{2}\theta\right)$$

Since the interception happened in mid-air, $\theta \neq 0$ and $\theta \neq 2\pi$, thus $\sin \frac{1}{2}\theta \neq 0$. Therefore,

$$2\sin\frac{1}{2}\theta = \frac{-1}{\cos\frac{1}{2}\theta} \left(\theta - \frac{3\pi}{2} - 2\sin\frac{1}{2}\theta\cos\frac{1}{2}\theta\right)$$

$$2\sin\frac{1}{2}\theta\cos\frac{1}{2}\theta = -\left(\theta - \frac{3\pi}{2} - \sin\theta\right)$$

$$\sin\theta = -\theta + \frac{3\pi}{2} + \sin\theta$$

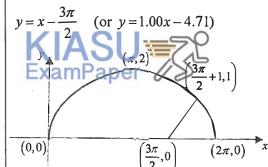
$$\theta = \frac{3\pi}{2}$$

Coordinate of interception: $\left(\frac{3\pi}{2} - \sin\frac{3\pi}{2}, 1 - \cos\frac{3\pi}{2}\right) = \left(\frac{3\pi}{2} + 1, 1\right)$

Method B (Using GC)

Solve
$$\frac{(1-\cos\theta)-0}{\left((\theta-\sin\theta)-\frac{3\pi}{2}\right)} = -\tan\frac{1}{2}\theta$$
 using a GC, we have

 $\theta=4.7124$, $\,\theta=0\,\mathrm{or}\,\,\theta=2\pi$. Since interception is in mid-air, $\,\theta=4.7124$.


Coordinate of interception:

$$(4.7124 - \sin 4.7124, 1 - \cos 4.7124) = (5.71, 1.00)$$
 (3 s.f.)

Note that the question did not restrict us in terms of the usage of the GC, so we can solve the equation for θ using GC by plotting the relevant graph. (Ask your friends or tutors to show you the GC steps if you still do not know how to use your GC properly.)

iv | Equation of the path of the missile:

$$y = -\tan\left(\frac{\frac{3\pi}{2}}{2}\right)\left(x - \frac{3\pi}{2}\right)$$

Range of values of x:

$$\left[\frac{3\pi}{2} \le x \le \frac{3\pi}{2} + 1\right]$$

or
$$\frac{3\pi}{2} \le x \le 5.71$$

9	3 0 (0)(2 1	
	$x^{3} - 8 = (x - 2)(ax^{2} + bx + c)$	
	By observation, $a=1$, $c=4$.	
	Compare coefficient of x:	
	0 = 4 - 2b	
	b=2	
	$\therefore x^3 - 8 = (x - 2)(x^2 + 2x + 4)$	-
	$\begin{cases} a=1 \\ b=2 \\ c=4 \end{cases}$	
	b=2	
	c=4	
ii	$\frac{x^2}{x+\pi} \ge \frac{8}{x(x+\pi)}$	
	$x+\pi^{\frac{2}{n}}{x(x+\pi)}$	
	$x^3 - 8$	
	$\frac{x^3 - 8}{x(x + \pi)} \ge 0$	
	$(x-2)(x^2+2x+4)$	
	$\frac{(x-2)\left(x^2+2x+4\right)}{x\left(x+\pi\right)} \ge 0$	There is a need to
	But $x^2 + 2x + 4 = (x+1)^2 + 3 > 0$ for all real values of x, hence solve:	explain why $x^2 + 2x + 4 > 0$ for all
		real x . Completing the
	$\frac{x-2}{x(x+\pi)} \ge 0$	square is an efficient
	x(x+n)	method to do this.
	- $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$	
	$-\pi$ 0 2	
	$\therefore x \ge 2$ or $-\pi < x < 0$	
iii	Replace x with $\ln p$:	A common error is to not know how to solve
	$ \ln p \ge 2 \text{or} -\pi < \ln p < 0 $	$-\pi < \ln p < 0$.
	$\therefore p \ge e^2 \text{or} e^{-\pi}$	
10i	Given $u_n = \frac{2}{(n+1)!}$, for $n \ge 1$,	
	(n+1)!	
	$u_n - u_{n+2} = \frac{2}{(n+1)!} - \frac{2}{(n+3)!}$	
	-2(n+2)(n+3)-2	
	$=\frac{2(n+2)(n+3)-2}{(n+3)!}$	
	$2(n^2+5n+6-1)$	
	(n+3)	
	Example 11 2)	
	$=\frac{2(n^2+5n+5)}{(n+3)!}$	
	(n+3)!	

ii	$\sum_{n=1}^{N} \frac{n^2 + 5n + 5}{(n+3)!} = \frac{1}{2} \sum_{n=1}^{N} (u_n - u_{n+2})$ $= \frac{1}{2} (u_1 - u_3 + u_2 - u_4 + u_3 + u_5)$ $\vdots + u_{N-2} - u_{N+1} + u_{N+1} + u_{N+1} + u_{N+1} + u_{N+2}$ $= \frac{1}{2} (u_1 + u_2 - u_{N+1} - u_{N+2})$ $= \frac{1}{2} \left(\frac{2}{2!} + \frac{2}{3!} - \frac{2}{(N+2)!} - \frac{2}{(N+3)!} \right)$ $= \frac{2}{3} - \frac{1}{(N+2)!} \frac{1}{(N+3)!}$	Follow from (i) and use the symbols u_1 , u_2 , u_3 instead of calculating each value.
iii	Find $\frac{29}{6!} + \frac{41}{7!} + \dots + \frac{n^2 + 5n + 5}{(n+3)!} + \dots + \frac{209}{15!}$. Observe that $\begin{bmatrix} \text{for } \frac{29}{6!}, n = 3 \text{ in } \frac{n^2 + 5n + 5}{(n+3)!}; \\ \text{for } \frac{41}{7!}, n = 4 \text{ in } \frac{n^2 + 5n + 5}{(n+3)!}; \end{bmatrix}$	-
	For $\frac{209}{15!}$, $n = 12$ in $\frac{n^2 + 5n + 5}{(n+3)!}$]. Hence, $\frac{29}{6!} + \frac{41}{7!} + \dots + \frac{n^2 + 5n + 5}{(n+3)!} + \dots + \frac{209}{15!}$	
	$= \sum_{n=3}^{12} \frac{n^2 + 5n + 5}{(n+3)!}$ $= \sum_{n=1}^{12} \frac{n^2 + 5n + 5}{(n+3)!} - \sum_{n=1}^{2} \frac{n^2 + 5n + 5}{(n+2)!}$ $= \frac{2}{3} - \frac{1}{14!} - \frac{1}{15!} - \left(\frac{2}{3} - \frac{1}{4!} - \frac{1}{5!}\right)$ $= 0.0500 (3 \text{ s.f.})$	-

		1
iv	For $\sum_{n=1}^{N} \frac{n^2 + 5n + 5}{(n+3)!} = \frac{2}{3} = \frac{1}{(N+2)!} = \frac{1}{(N+3)!}$,	Compare
	n=1 $(n+3)!$ 3 $(N+2)!$ $(N+3)!$	$\sum_{n=1}^{N} \frac{n^2 + 5n + 5}{(n+3)!}$ with
	As $N \to \infty$, $\frac{1}{(N+2)!} \to 0$ and $\frac{1}{(N+3)!} \to 0$,	" - \ / /
	(N+2)! (N+3)!	$\sum_{n=1}^{\infty} \frac{n^2 + 5n + 5}{(n+3)!} , \text{ you}$
	$\sum_{i=1}^{N} \frac{n^2 + 5n + 5}{(n+3)!} \rightarrow \frac{2}{3}$, a finite value.	
	$\sum_{n=1}^{\infty} \frac{(n+3)!}{(n+3)!}$ 3, a finite value.	discussing convergence
		where $N \to \infty$.
	Hence $\sum_{n=1}^{\infty} \frac{n^2 + 5n + 5}{(n+3)!}$ is convergent.	So, let $N \to \infty$ and see
	$\sum_{n=1}^{\infty} (n+3)!$	if $\sum_{n=1}^{N} \frac{n^2 + 5n + 5}{(n+3)!}$
		$\begin{array}{cccc} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\ $
		value and give the
	Replace n with $n + 1$:	reasons why. It is easier to approach
'	Repute n with n + 1.	such questions by
	$\sum_{n=1}^{N} \frac{n^2 + 3n + 1}{(n+2)!} = \sum_{n=1}^{n+1=N} \frac{(n+1)^2 + 3(n+1) + 1}{(n+1+2)!}$	starting from
	$\sum_{n=2}^{\infty} \frac{(n+2)!}{(n+2)!} = \sum_{n+1=2}^{\infty} \frac{(n+1+2)!}{(n+1+2)!}$	$\sum_{n=2}^{N} \frac{n^2 + 3n + 1}{(n+2)!}$ and
	$=\sum_{n=1}^{N-1} \frac{n^2 + 5n + 5}{(n+3)!}$	$\frac{1}{n-2}$ $(n+2)!$ relating it to
	$=\sum_{n=1}^{\infty}\frac{(n+3)!}{(n+3)!}$	$\frac{N}{N}n^2 + 5n + 5$
	_ 2 1 1	$\sum_{n=1}^{N} \frac{n^2 + 5n + 5}{(n+3)!}$. The
	$=\frac{2}{3}-\frac{1}{(N+1)!}-\frac{1}{(N+2)!}$	general rule of thumb is
		to start from the "new sum" and relate it to
		"old sum".
11i	Every horizontal line $y = k$ ($k \in \text{range of f}$) cuts the graph	Diagonal and the Para
	y = f(x) exactly once. Thus f is one-one, and inverse function of f	Please show the line $y = k$ in your graph.
	exists.	y was jam gampan
	/(3,8)	
	(3,8)	
	0/	
	y = k	
	y = f(x)	
ii	Let $y = f(x)$, $x \le 3$	Common mistake:
	KIAS I TO	$y = -(x-4)^2 + 9$
	ExamPaper_	$\left(x-4\right)^2 = 9 - y$
	y = (\(\lambda \pi \rangle \) \(\tau \)	$x-4=\sqrt{9-y}$
	$x = 4 \pm \sqrt{9 - y}$	$x-4 = \sqrt{9-y}$ There is also a need to
	$x \le 3 \Rightarrow x = 4 - \sqrt{9 - y}$	reject the incorrect
	$f^{-1}: x \mapsto 4 - \sqrt{9 - x}, x \in \mathbb{R}, x \le 8$	expression and give reason.

The graphs of y = f(x) and $y = f^{-1}(x)$ are reflections of each other Be mindful of the scale in the line y = x. used on your axes. To draw an accurate diagram, you should be using the same scale for both axes. Question specifically ask for coordinates of axes intersections and endpoints, so make sure you indicate them as such. At point of intersection, $f(x) = f^{-1}(x) = x$. Hence we solve f(x) = x. iv f(x) = x $\Rightarrow -x^2 + 8x - 7 = x$ $\Rightarrow x^2 - 7x + 7 = 0$ $\Rightarrow x = \frac{7 \pm \sqrt{49 - 28}}{2}$ $x \le 3 \Rightarrow x = \frac{7 - \sqrt{21}}{2}$ Since y = x, y-coordinate = $\frac{7 - \sqrt{21}}{2}$ Since $D_{ff^{-1}} = D_{f^{-1}} = R_f$, the line y = x should be sketched with domain $(-\infty,8]$ y = x

1 101			0.00			
12i						
	Tota	al after 2 nd year: 12000(1.6				
		4				
		nce, the total in his account a				
ii		can tabulate the total in Joh h year:				
		<u> </u>	•			
		Amount of money at the start of the year	Amount of money at the end of the year			
	1	12000	12000(1.04)			
	2	12000 + 12000(1.04)	$12000(1.04) + 12000(1.04)^2$			
	3	12000 + 12000(1.04) +	12000(1.04) +12000(1.04) ²			
		12000(1.04) ²	+12000(1.04) ³			
		12000(1.01)	12000(1.04)			
	n		12000(1.04) +12000(1.04) ²			
			+12000(1.04) ³ ++12000(1.04)"			
			12000(1.04)			
		1	1			
	T	otal (in dollars) in John's ac	ecount at the end of n years			
	=13	2000(1.04)+12000(1.04) ²	To write 12000[1.04+			
	1	2000(1.04)(1-1.04")	$+(1.04)^2++(1.04)^n$			
	= -	2000(1.04)(1-1.04") 1-1.04	before applying the GP			
	I	12000(1.04" -1)		formula for a "show"		
			•	question.		
iii	Sub	n = 20, total (in dollars) at				
	I	$312000(1.04^{20}-1)$				
	l .	371630.42				
	1	er that, he makes no further				
		npounded, hence after anoth				
	acc	ount = $371630.42(1.04^{15}) = 6$	669285.39			
	Aft	er 35 years, he will have \$60	59285.39 in his account.			
iv	250	00+2525+2550+ +256	$00 + (k-1)(25) = \frac{k}{2}(5000 + 25(k-1))$			
		00 1 2020 1 2000 1 1 25	$\frac{1}{2}(3000 + 25(n - 1))$	You should be solving		
		$\frac{k}{2}(5000+25(k-1)) > 71$	5000	an inequality and not an		
		2	equation.			
		5000k + 25k(k-1) > 143				
	25/	$k^2 + 4975k - 1430000 > 0$				
	K	$k^2 + 199k - 57200 > 0$				
	E	xamPaper v				
	-	Main aper 0				
		-358.5 159	x			
		155				
	1	k < -358.5 or k > 159.5				
	Her	nce, he would need 13 years				