1. **[AI 17 S3 SA2]**

(a) In the expansion of
$$\left(x^3 - \frac{1}{5x^2}\right)^{10}$$
, find the term independent of x and show
that the term in x^{10} is $\frac{42}{125}x^{10}$. [5]

(b) Hence find the coefficient of the term in x^{10} in the expansion of $(2+9x^{10})\left(x^3-\frac{1}{5x^2}\right)^{10}$.

2. [AI 17 S3 SA2]

Given that the expansion of $(h + x)(1 - 3x)^n$ in ascending powers of x is $3 - 44x + qx^2 + \ldots$, find the values of the constant h, n and q.

3. [ACS(B) 17 S3 SA1]

(a) Write down the first three terms in the expansion, in ascending powers of x, of $\left(1-\frac{x}{2}\right)^8$.

(b) Given that the coefficient of x^2 is 2 in the expansion $(2+kx)\left(1-\frac{x}{2}\right)^8$, find the value of k. [2]

4. [Beatty 17 S3 SA1]

(a) Find the values of k for which the coefficient of x^2 in the expansion of $(3 + kx)^5 + (1 - 2x)^6$ is 90.

(b) i. Calculate the coefficient of
$$x^2$$
 in the expansion of $\left(\frac{2}{x} + 3x\right)^8$. [3]

ii. Explain why there is no term in
$$x^3$$
 in the expansion of $\left(\frac{2}{x} + 3x\right)^{\circ}$. [1]

5. [Junyuan 17 S3 SA2]

(a) Use the general term to find the coefficient of $\frac{1}{x^{14}}$ in the expansion of $\left(2x - \frac{1}{x^3}\right)^{10}$.

(b) i. Write down and simplify the first three terms in the expansion of $\left(1+\frac{x}{3}\right)^n$ in ascending powers of x.

ii. The coefficients of x and x^2 in the expansion of $(1 + ax^2)\left(1 + \frac{x}{3}\right)^n$ are 4 and 7 respectively. Find the value of a and of n. [4]

6. [Mayflower 17 S3 SA2]

- (a) Given that the term independent of x in the binomial expansion of $\left(2x + \frac{k}{x}\right)^8$ is 90720, find the value of the positive constant k.
- (b) Using the value of k found in part (a), determine the term in x in the expansion of $\left(6x \frac{1}{x}\right)\left(2x + \frac{k}{x}\right)^8$. [4]

[2]

[6]

[2]

[4]

[4]

[2]

[4]

7. [New Town 17 S3 SA2]

(a) Expand $(1-3x)^5$ in ascending powers of x, up to and including the term in x^3 . [3]

[3]

- (b) Hence determine the coefficient of x^3 in the expansion of $(2+x)(1-3x)^5$.
- 8. [SST 17 S3 SA1]
 - (a) Write down the first four terms of the expansion $\left(x^2 \frac{2}{x}\right)^{10}$ in descending powers of x. [4]
 - (b) Hence find the first two terms in the expansion of $(x^2 + 1)^2 \left(x^2 \frac{2}{x}\right)^{10}$ with powers of x in descending order. [3]

Answers

- 1. (a) $\frac{42}{3125}$. (b) $\frac{2479}{3125}$.
- 2. h = 3, n = 5, q = 255.
- 3. (a) $1 4x + 7x^2 + \dots$ (b) k = 3.
- 4. (a) $k = \pm \frac{1}{3}$. (b) i. 108 864
- 5. (a) 3360.
 - (b) i. $1 + \frac{nx}{3} + \frac{n(n-1)x^2}{18} + \dots$ ii. $n = 12, a = -\frac{1}{3}$.
- 6. (a) k = 3.
 - (b) $495\,936x$.
- 7. (a) $1 15x + 90x^2 270x^3 + \dots$ (b) -450.
- 8. (a) $x^{20} 20x^{17} + 180x^{14} 960x^{11} + \dots$ (b) $x^{24} + 2x^{22} + \dots$