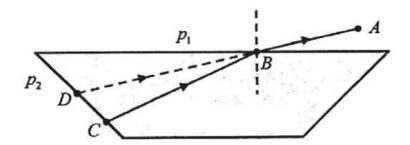
[1]

[3]


[4]

1. [VJC 18 MYE Q2]

The line *l* has equation $\frac{x-8}{6} = \frac{y}{-1} = \frac{z+1}{-4}$ and A(8,0,-1) is a point on *l*. The point *B* has coordinates (1,3,1).

- (a) Find the position vector of the point *F* on *l* which is closest to *B*. [3]
- (b) Explain why *l* lies in the plane *p* with equation x 2y + 2z = 6. [2]
- (c) Find the shortest distance from *B* to *p*. [2]
- (d) Let **n** denote a unit vector perpendicular to plane p. Give the geometrical meaning of $|\overrightarrow{BA} \times \mathbf{n}|$.

2. [VJC 18 MYE Q6]

The diagram shows the vertical cross-section of a slab of glass in the form of a trapezoidal prism, where the top surface is a plane p_1 and the left side of the glass is a plane p_2 . C and D are points in p_2 . The light from a particle placed at C travels in a straight line to B in the glass. The light is refracted at B and travels in a straight line to A(3,1,2) in the air. To an observer at A, the particle at C appears to be at D(0,-7,4).

The plane p_1 has equation z = 0 and AB is parallel to $\mathbf{i} - 2\mathbf{j} + 2\mathbf{k}$.

(a) Find the coordinates of *B*.

 \overrightarrow{BC} is in the direction of $-4\mathbf{i} + a\mathbf{j} + \mathbf{k}$, where A is a positive constant. The line BC makes an angle of $\cos^{-1}\left(\frac{1}{9}\right)$ with the normal to p_1 at B.

- (b) Find the value of *a*. [3]
- (c) Given that the distance *BC* is 18, show that the position vector of *C* is

$$-6\mathbf{i} + 19\mathbf{j} + 2\mathbf{k}.$$

[2]

The plane p_2 has equation $\mathbf{r} \cdot \mathbf{n} = 34$.

(d) Given that p_2 is perpendicular to a plane with equation 2x + y = 7, find **n**.

Answers

- 1. (a) $\begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix}$.
 - (c) 3.
- 2. (a) (2,3,0).
 - (b) a = 8.
 - $(d) \begin{pmatrix} -1 \\ 2 \\ -5 \end{pmatrix}$
- 12. (a) $\mathbf{r} = \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}, \ \lambda \in \mathbb{R}.$
 - (b) 18.4°.
 - (c) $p = -\frac{2}{3}$, $q = -\frac{1}{3}$.
 - (d) $\frac{5\sqrt{2}}{3}$.