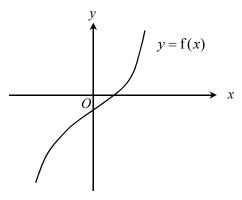

1 The complex numbers z and w satisfy the following equations.

$$2z + 1 = |w|$$

$$2w - z = 4 + 24i$$

Find z and w, giving your answers in the form a + ib where a and b are real numbers. [4]


2 (a) The diagram below shows a sketch of the curve $y = \frac{x}{\sqrt{1+x^2}}$ for $x \ge 0$. Rectangles, each of width $\frac{1}{n}$, where $n \in \mathbb{Z}^+$, are drawn under the curve for $0 \le x \le 1$.

- Show that the total area of all the rectangles, A, can be written as $\frac{1}{n} \sum_{r=1}^{n-1} \frac{r}{\sqrt{n^2 + r^2}}$. [3]
- **(b)** Find the exact value of $\lim_{n\to\infty} A$. [3]
- 3 The points P, Q and R have position vectors \mathbf{p} , \mathbf{q} and \mathbf{r} respectively. The points P and Q are fixed and R varies.
 - (a) Given that \mathbf{p} is non-zero and $(\mathbf{r} \mathbf{q}) \times \mathbf{p} = \mathbf{0}$, find a linear relationship between \mathbf{p} , \mathbf{q} and \mathbf{r} . Describe geometrically the set of all possible positions of the point R.
 - **(b)** Given that $\mathbf{r} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$, $\mathbf{p} = \begin{pmatrix} 2 \\ -5 \\ 3 \end{pmatrix}$, $\mathbf{q} = \begin{pmatrix} -4 \\ 1 \\ 2 \end{pmatrix}$ and $(\mathbf{r} \mathbf{q}) \cdot \mathbf{p} = 0$, find a relationship between x, y

and z. Describe geometrically the set of all possible positions of the point R. [4]

4 It is given that f(x) is a cubic polynomial with real coefficients. The diagram shows the curve with equation y = f(x).

(a) What can be said about all the roots of the equation f(x) = 0? [2]

Suppose $f(x) = 2x^3 - 7x^2 + 16x + c$, where c is a real number.

(b) Show that
$$c = -15$$
, if the equation $f(x) = 0$ has a root $x = 1 - 2i$.

- (c) Without using a calculator, determine the other roots of the equation f(x) = 0. [3]
- (d) Hence, find the roots of the equation $-15w^3 + 16w^2 7w + 2 = 0$. [3]
- 5 The first four terms of a sequence of numbers are -4, -2, 12 and 38. The sum of the first n terms of this sequence is denoted by S_n .
 - (a) Explain why S_n cannot be a quadratic polynomial in n. [2]

It is given that S_n is a cubic polynomial.

- **(b)** Find S_n in terms of n. [3]
- (c) Show that the *n*th term of the sequence, u_n is $6n^2 16n + 6$. [2]
- (d) Hence find $\sum_{n=10}^{2m} (u_n u_{n-1})$ in terms of m. [3]

- 6 A curve C has equation $y = \frac{ax^2 + bx + c}{x d}$, where a, b, c and d are constants. It is given that two of its asymptotes are y = x + 2 and x = 1.
 - (a) State the value of d, and show that a = b = 1. [2]
 - (b) Using differentiation, find the range of values of c such that the graph of C contains two stationary points. [4]

Use c = 14 for the rest of the question.

- (c) Sketch C, showing clearly the equations of asymptotes and the coordinates of the turning points. [3]
- (d) State the maximum number of roots to the equation

$$k^{2}(x-5)^{2} + \left(\frac{ax^{2} + bx + c}{x-d} - 3\right)^{2} = k^{2}$$
, where $k > 0$.

Deduce the range of values of k for the maximum number of roots to occur. [2]

7 It is given that

$$f: x \mapsto \begin{cases} (x-2)^2 & , & 0 < x \le 3, \\ 3x-8 & , & 3 < x \le 4, \end{cases}$$

- (a) (i) Sketch the graph of y = f(x), labelling the coordinates of any turning points and endpoints. Explain why f^{-1} does not exist. [3]
 - (ii) If the domain of f is restricted to (0, k], state the largest value of k such that f^{-1} exists. Hence, for this value of k, find $f^{-1}(x)$ and state the domain of f^{-1} . [3]
 - (iii) The function g is such that

$$g: x \mapsto e^x + 3$$
, $x \le 0$.

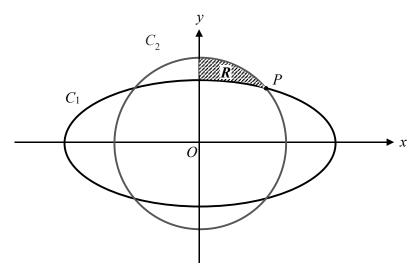
Find the function fg, giving your answer in similar form.

(b) It is given further that f(x) = f(x+4).

(i) Evaluate
$$f(25)$$
 and $f(-8)$. [2]

[3]

(ii) Sketch the graph of
$$y = f\left(\frac{1}{2}x - 1\right)$$
 for $-8 < x \le 10$. [2]


8 (a) Use the substitution $x = \sqrt{15} \sin \theta$ to show that

$$\int \sqrt{15 - x^2} \, dx = \frac{1}{2} x \sqrt{15 - x^2} + \frac{15}{2} \sin^{-1} \left(\frac{x}{\sqrt{15}} \right) + C.$$
 [5]

[4]

[6]

The diagram below shows a sketch of the curves C_1 and C_2 .

The curve C_1 has parametric equations

$$x = 6\cos\theta$$
, $y = 2\sqrt{2}\sin\theta$

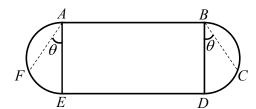
for $0 \le \theta \le 2\pi$.

The curve C_2 has equation

$$x^2 + y^2 = 15$$
.

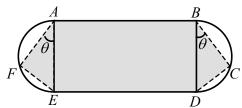
Given that P is a point of intersection between C_1 and C_2 ,

(b) determine the exact coordinates of P.


The region R is bounded by curves C_1 and C_2 and the y-axis in the first quadrant.

(c) Show that the area of *R* is given by

$$m\sin^{-1}\left(n\sqrt{15}\right)-\sqrt{2}\pi$$


where m and n are constants to be determined.

9 The following diagram shows a plot of land formed by two semicircles joined to a rectangle ABDE.

Point C lies on the arc BD, with $\angle CBD = \theta$, where $0 < \theta < \frac{\pi}{2}$, and point F lies on the arc AE, with $\angle FAE = \theta$.

As part of a training regime, Nigel runs along the perimeter of the shaded portion ABCDEF as shown in the diagram.

It is given that AE is fixed at 2r metres, and AB is twice the length of AE.

(a) Show that the perimeter, P metres, of ABCDEF is

$$P = 4r(2 + \cos\theta + \sin\theta).$$
 [2]

- (b) Find the exact value of θ which maximises P and hence find the exact maximum distance that Nigel can run in one round of ABCDEF, giving your answer in terms of r. [5]
- (c) Nigel plans to run one round with maximum distance at a constant speed of 6 metres per second within 3 minutes. Find the maximum value of r, giving your answer in the form $a+b\sqrt{2}$, where a and b are constants to be determined. [2]
- (d) To clearly mark out the shape ABCDEF, the management wishes to plant grass within the shape ABCDEF. It costs \$0.15 to plant 1 m² of grass and the management has a budget of \$10000. Using the value of θ found in part (b) and the value of r found in part (c), determine, with justifications, if the management is able to afford to cover the entire shape ABCDEF with grass.

10 A marketing manager of a company wishes to advertise a new product. He has tasked his team to create an engaging video and upload it on InstaFame social platform. He hopes the video would go viral on the internet so that the product will sell well.

According to some analysts, a video is considered to have gone viral when it gets at least a total of 5 million views at the end of the seventh day after its initial posting.

The video is uploaded at the start of a particular day and the number of daily views at the end of the first day is 1196. On each subsequent day, the number of daily views at the end of the day will be three times that of the previous day.

- Find the number of daily views at the end of the third day. [2] (a)
- [2] **(b)** Determine if the video will go viral.

The marketing manager also looks at the number of comments being posted on the InstaFame social platform. On each subsequent day, the number of daily comments at the end of the day will be 780 more than that of the previous day. It is given that the number of daily comments posted at the end of the first day is 576.

(c) Find the least number of days for the total number of comments to exceed 100 000. [3]

When the total number of comments reaches 100 000, a software in InstaFame social platform will be activated to remove the oldest comments at the start of the following day, helping to save storage space. Upon the activation of the software, w comments will be removed at the start of each day and the number of comments at the end of the day is 3% more than the number of comments at the start of the day. The software will remain activated even when the number of comments drops below 100 000 at any one time.

(d) By taking Day 1 as the day which the software starts removing comments, show that the number of comments at the end of Day *n* is

$$(1.03)^n M - \frac{103w}{3} [(1.03)^n - 1]$$

where *M* is a constant to be determined.

[3] Hence find the range of values of w such that all comments are removed by the end of Day (e) 31. Give your answer correct to the nearest integer. [2]

MATHEM Paper 2 Candidates an	ATICS swer on the Question Paper.		9758/02 13 Sep 2023 3 hours
CLASS		INDEX NUMBER	
CANDIDATE NAME			
CJC	CATHOLIC JUNIOR COLLEGE General Certificate of Education Advanced Level Higher 2 JC2 Preliminary Examination		

READ THESE INSTRUCTIONS FIRST

Additional Materials: List of Formulae (MF26)

Write your class, index number and name on the work you hand in.

Write in dark blue or black pen.

You may use a HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

Answer all the questions.

Write your answers in the spaces provided in the Question Paper.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

You are expected to use an approved graphing calculator.

Unsupported answers from a graphing calculator are allowed unless a question specifically states otherwise.

Where unsupported answers from a graphing calculator are not allowed in a question, you are required to present the mathematical steps using mathematical notations and not calculator commands.

You are reminded of the need for clear presentation in your answers.

The number of marks is given in brackets [] at the end of each question or part question.

Question	1	2	3	4	5	6	7	8	9	10	Total
Marks											
Total	7	8	12	13	8	8	10	10	12	12	100

This document consists of 3 printed pages, including this cover page.

Section A: Pure Mathematics [40 marks]

1 Without using a calculator, solve the inequality $\frac{x^2 + 2x - 5}{x^2 - 2x} < 2$. [4]

Hence, solve the inequality
$$\frac{x^2 + 2|x| - 5}{x^2 - 2|x|} > 2$$
. [3]

2 It is given that $y = e^{-x} \sin x + x - 1$.

- (a) Show that $\frac{d^2y}{dx^2} = ke^{-x}\cos x$, where k is a constant to be determined. [2]
- (b) By further differentiation of this result, find the Maclaurin series for y, up to and including the term in x^3 .
- (c) By using the result in part (b) and standard series from the List of Formulae (MF26), find the expansion of $\frac{e^{-x} \sin x + x 1}{\cos 2x}$ in ascending powers of x, up to and including the term in x^3 , giving the coefficients in exact form.
- Following the popularity of the action role-playing game, Ginseng Impact, three years ago, developers have developed a strategy game, Ginseng Impactful. The number of people who download Ginseng Impactful, P (in thousands), in a particular city, at time t months, can be modelled by the differential equation

$$\frac{\mathrm{d}P}{\mathrm{d}t} = \frac{1}{26}P(13-2P).$$

There were 2000 people who download Ginseng Impactful when it is launched.

(a) Show that
$$P = \frac{26}{9e^{\frac{1}{2}t} + 4}$$
. [6]

- (b) Determine, the time taken, in months, for the number of people who download Ginseng Impactful to double since the launch. [2]
- (c) Find the number of people that download Ginseng Impactful in the long run. [2]
- (d) Hence sketch the graph showing the number of people that download Ginseng Impactful against time. [2]

4 The plane Π_1 and the line l have equations

$$\Pi_1$$
: $\mathbf{r} \cdot \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix} = 3$ and $l: \frac{x+2}{3} = \frac{4-y}{2} = z-3$

respectively.

- (a) Find the acute angle between Π_1 and I. [2]
- **(b)** Find the coordinates of the point of intersection between Π_1 and I. [3]
- (c) Find the perpendicular distance from B(10, -4, 7) to Π_1 . [3]

The plane Π_2 contains l and is perpendicular to Π_1 .

- (d) Find a cartesian equation of Π_2 . [3]
- (e) Without using a calculator, find a vector equation of the line which lies in both Π_1 and Π_2 . [2]

Section B: Probability and Statistics [60 marks]

5 During the Great Singapore Sale, a certain electronics store organises a lucky draw to attract more customers. The lucky draw is designed as follows:

A circular board is divided into four sectors labelled with numbers 1, 2, 3, 4 and has angles 144°, 108°, 72°, 36° respectively. The board has a spinner pivoted at the centre of the circular board. When a customer spins the spinner, the spinner comes to rest randomly in one of the four sectors.

Every customer who visits the store is allowed to play one round of the lucky draw. In each round of the lucky draw, the customer gets to spin the spinner twice.

The score, X, of the customer is

- the sum of the two numbers if the numbers from the two spins are different,
- three times the number if the numbers from the two spins are the same.

A customer wins a prize if the score, X, is more than 6.

(a) Show that
$$P(X=6) = 0.15$$
. [2]

(b) Find the probability distribution of X.

(c) Find the probability that a customer scores less than 10, given that the customer wins a prize.

[3]

6 The sales manager of a company that sells air conditioning systems presented the data of average daily temperature, t (°C) and sales, s (in hundred units) at a meeting.

Average daily temperature, t (°C)	18	20	23	26	30	32	33	34
Sales, <i>s</i> (in hundred units)	307	366	497	523	565	580	588	596

(a) Draw a scatter diagram of these data and calculate the value of the product moment correlation coefficient between *s* and *t*. Comment on whether a linear model would be appropriate, referring both to the scatter diagram and the value of the product moment correlation coefficient found.

The marketing director proposes that the data should be modelled instead by the regression equation $s = a \ln t + b$, where a and b are constants.

(b) Find the values of a and b, giving your answers to 3 decimal places. [1]

[1]

- (c) Calculate the product moment correlation coefficient between s and $\ln t$.
- (d) Using parts (a) and (c), explain which is a better model.
- (e) Use the model proposed by the marketing director to estimate the number of units sold when the average daily temperature is 38°C and comment on its reliability. [2]
- 7 In a class of 18 students, there are 12 girls and 6 boys. A chairperson, a vice-chairperson and a secretary are chosen from the 18 students.
 - (a) Find the number of ways the chairperson, the vice-chairperson and the secretary can be chosen so that
 - (i) they are all girls, [1]
 - (ii) there are at least one girl and at least one boy. [3]

The 18 students sit at random in a circle for a lesson.

Find the probability that

- (b) the chairperson, the vice-chairperson and the secretary are all separated from one another, [3]
- (c) there are exactly 2 girls sitting between each boy. [3]

- 8 The store manager at CJStore keeps a bin of large number of oranges. It is known that, on average, p% of the oranges are rotten. The oranges are packed into packets of 10 oranges each. The number of rotten oranges in each packet is denoted by the random variable X.
 - (a) State, in context, two assumptions needed for X to be well modelled by a binomial distribution. [2]

Assume now that *X* follows a binomial distribution.

- **(b)** It is given that p = 20.
 - (i) Find the probability that there are at least two rotten oranges in a randomly chosen packet. [2]
 - (ii) 100 packets of oranges are sold at a profit of \$2 per packet. The store offers a discount of \$d\$ for any packet of oranges that contains more than 1 rotten orange. By finding the expected number of packets of oranges that contains more than 1 rotten orange, find the range of values of d, correct to 2 decimal places, if the store manager is expecting a net profit.
 [3]
- (c) The store manager wants to ensure that 95% of the packets of oranges contain at most one rotten orange. Write down an equation satisfied by p. Hence find the value of p. [3]
- 9 In this question, you should state the parameters of any normal distributions you use.

A supermarket sells apples and guavas. The masses, in grams, of the apples and guavas each follows a normal distribution. The means and standard deviations of the masses of the apples and guavas are shown in the following table:

	Mean (g)	Standard deviation (g)
Apples	152	28
Guavas	268	43

Assume that the masses of the apples and guavas are independent of one another.

- (a) Three apples are randomly chosen. Find the probability that two of the apples each has mass less than 140g and one of the apples has mass more than 170g. [3]
- (b) Find the probability that the total mass of five randomly chosen apples is less than the total mass of three randomly chosen guavas. [3]

The supermarket packs apples and guavas into "Family Packs" for sale. A Family Pack contains three apples and two guavas that are randomly selected.

- (c) The probability that a randomly chosen Family Pack differs from the mean mass of Family Packs by less than *m* grams is 95%. Find the value of *m*. You may assume that the packing material has negligible mass.
- (d) Family Packs are sold at \$5 per kg. Find the probability that a randomly chosen Family Pack costs less than \$5.00. [3]

10 Vesla, an electric vehicle (EV) car manufacturer claims that their EV cars have an average travelling distance of 650 km on a single charge. A car reviewer on the MeTube online video sharing platform wants to test if the EV car manufacturer overstated its claim.

The MeTube car reviewer buys a Vesla EV car to conduct his own test drives. He records the travelling distance on a single charge, x km, on 50 different days over a year. The travelling distance on a single charge, x km, is summarised below:

$$\sum (x-650) = -34.39 \qquad \sum (x-650)^2 = 22769.98$$

- (a) Calculate unbiased estimates of the population mean and variance of the travelling distance of an EV car on a single charge. [2]
- (b) State hypotheses that the MeTube reviewer can use to test if Vesla has overstated its claim about travelling distance on a single charge, defining any symbols you use. Work out the test statistic in this case, and use it to carry out the test at the 5% level of significance, giving your conclusion in the context of the question.

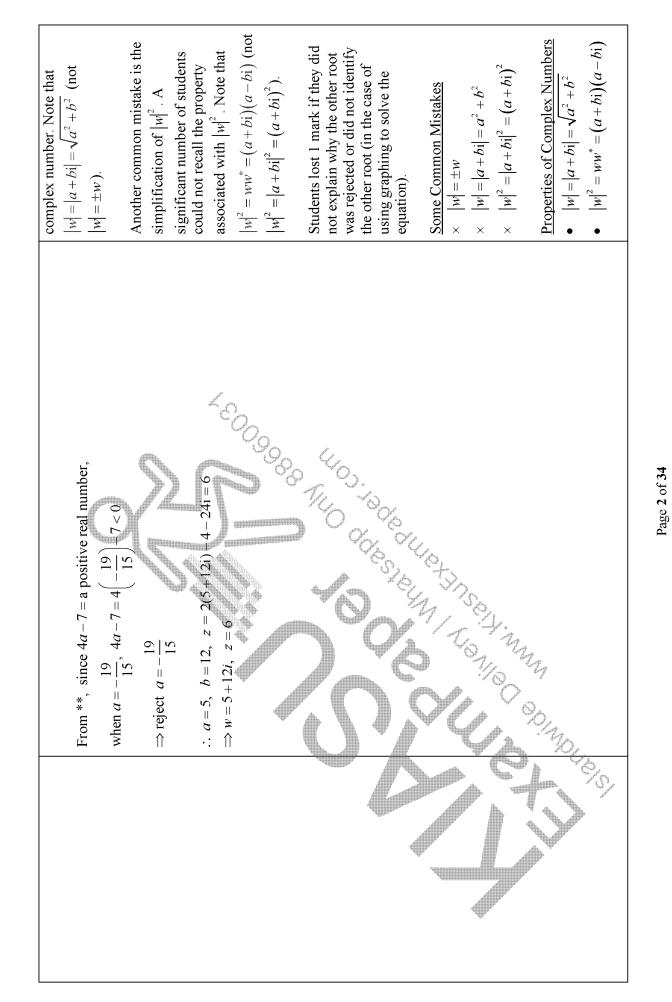
 [5]
- (c) Explain if the MeTube car reviewer needs to apply Central Limit Theorem for the test to be valid. [2]

Another car reviewer on the TokTik online video sharing platform wants to test if the EV car manufacturer's claim is true. He rents a Vesla EV car to conduct his test drives where he records the travelling distance on a single charge. He records a random sample of 6 test drives and calculates the mean travelling distance on a single charge.

- (d) Explain whether the TokTik car reviewer should use a 1-tail or a 2-tail test. [1]
- (e) State two assumptions that allow the TokTik car reviewer to carry out his test. [2]

Answer

	1	z = 6, $w = 5 + 12i$	Aa	
	2	(b) $\sqrt{2}-1$	7	
	3	(a) $r = q + \lambda p$		
		(b) $2x - 5y + 3z = -7$		
	4	(c) $x = 1 + 2i$, $x = 1 - 2i$, $x = \frac{3}{2}$		
		(d) $w = \frac{1}{5} - \frac{2}{5}i$, $w = \frac{1}{5} + \frac{2}{5}i$, $w = \frac{2}{3}$		
	5	(b) $S = 2n^3 - 5n^2 - n$		Pilipon .
		(d) $24m^2 - 32m - 342$		<u>U. </u>
	6	(a) $d = 1$	90	1
		(b) $c > -2$ (d) 2 roots; $k > 8$	(2) X	200
	7 -	(aii) $k = 2$; $f^{-1}(x) = 2 - \sqrt{x}$, $0 \le x < 4$	307	
		(a) $3_n = 2h - 3h - h$ (d) $24m^2 - 32m - 342$ (a) $d = 1$ (b) $c > -2$ (d) 2 roots; $k > 8$ (aii) $k = 2$; $f^{-1}(x) = 2 - \sqrt{x}$, $0 \le x < 4$ (aiii) $fg: x \mapsto 3(e^x + 3) - 8$, $x \in \mathbb{R}$, $x \le 0$ (bi) $f(25) = 1$; $f(-8) = 4$ (b) $(3, \sqrt{6})$ (c) $m = \frac{15}{2}$ and $n = \frac{1}{5}$ (b) $\theta = \frac{\pi}{4}$; $4r(2 + \sqrt{2})$ metres (c) $270 = 135\sqrt{2}$ (a) 10764	+0	
Account of the last	8	(b) $(3, \sqrt{6})$		
		(c) $m = \frac{15}{2}$ and $n = \frac{15}{5}$		
	9	(b) $\theta = \frac{\pi}{4}$; $4r(2+\sqrt{2})$ metres		
		(c) $270 = 135\sqrt{2}$		
	10	(a) 10764		
		(c) Least $n = 16$		
		(e) $w \ge 4991$		


Answer

		•
1	x < 0 or 1 < x < 2 or x > 5;	
	$-5 < x < -2$ or $2 < x < 5$ or $-1 < x < 1, x \ne 0$	
2	(a) $k = -2$	
	(b) $-1+2x-x^2+\frac{x^3}{3}+$	
	$\frac{(6)}{3}$ $\frac{1+2x}{3}$ $\frac{x}{3}$ $\frac{1}{3}$	
	(c) $-1+2x-3x^2+\frac{13}{3}x^3+$	
3	(b) 2.56 months	
	(c) 6500	
4	(a) 19.1°	
	(b) (4,0,5)	
	(c) $\sqrt{6}$ units	
	(d) $x + 5y + 7z = 39$	
	(e) $r = \begin{pmatrix} 4 \\ 0 \\ 5 \end{pmatrix} + \mu \begin{pmatrix} 4 \\ -5 \\ 3 \end{pmatrix}, \ \mu \in \mathbb{R}$	n ///
	(e) $f = 0$ $+\mu$ -3 $, \mu \in \mathbb{R}$	
	(5) (3)	
5	$\left \text{ (c) } \frac{8}{9} \right $	J ્ઇ
	9	P.S.
6	(c) $\frac{8}{9}$ (a) $r = 0.947$ (b) $a = 436.107$; $b = -923.838$ (c) $r = 0.968$ (e) 66254 units (ai) 1320 (aii) 3456 (b) $\frac{91}{136}$ (c) $\frac{1}{6188}$ (bi) 0.624 (bii) $0 < d < 3.20$ (c) $(1-0.01n)^{10} + 0.1n(1-0.01n)^{9} = 0.95 : 3.68$	0, 9
	(b) $a = 436.107$; $b = -923.838$	
	(c) r = 0.968 (e) 66 254 units	(S)
7	(ai) 1320	9.x
′	(aii) 3456	
	(1) 91	
	(b) $\frac{91}{136}$	
4	(c) $\frac{1}{6199}$	
4	6188	
8	(bi) 0.624	
	(bii) $0 < d < 3.20$	
	(bii) $0 < d < 3.20$ (c) $(1-0.01p)^{10} + 0.1p(1-0.01p)^{9} = 0.95$; 3.68	
9	(a) 0.0871	
	(b) 0.674	
	(c) 153	
1.0	(d) 0.541	
10	(a) $\overline{x} = 649.3122$; $s^2 = 464$	
	(b) $H_0: \mu = 650$ and $H_1: \mu < 650$	
	$z_{\text{test}} = -0.226$; Do not reject H_0	
		-

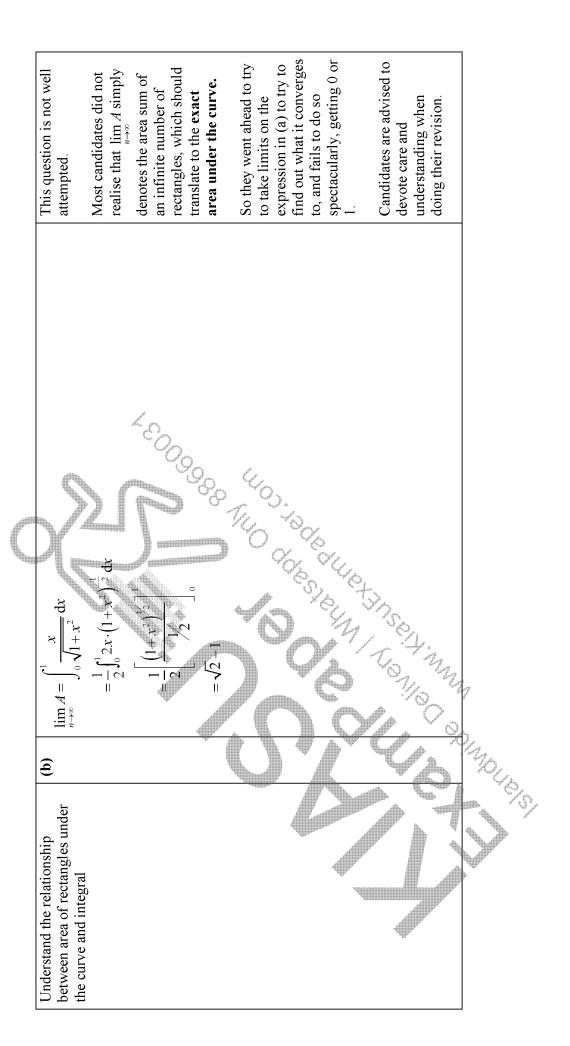
	Examiner's Feedback	This question is not well done.	In Method 1 (substitution),	students should make the	variable z the subject (common	in boun equations) rather than w	(w and w m both equations)	equation.	In Mathod 2 lucing Cortagion	form of both complex numbers),	most students did not realize that	z is real. Some students made	algebraic slips during expansion.	Some students squared both sides	of equation when they could	compare the real and imaginary	parts, resulting in tedious	expansions.	One of the commonly seen	mistakes was the treatment of	w . In this question of complex	numbers, some students treated	w as the absolute real function	rather than the modulus of a
	Solution	$\frac{\mathbf{Method} \ \mathbb{O}_{\mathbf{i}}}{2z+1= w } \tag{1}$	2 7 - 4 : 24;	(7) 1+7++-7-M7	From (2): $z = 2w - 4 - 24i$		Substitute into (1): $2(2w-4-24i)+1= w $	4w - 7 - 48i = w	Let $w = a + bi$	$4(a+bi)-8-24i+1 = \sqrt{a^2+b^2}$		$(4\alpha - 1) + (4b - 24)$ = $\sqrt{\alpha} + b$	Comparing Imaginary parts,	46-24=0			Comparing Keal parts.	$4a-7 = \sqrt{a^2+b^2}$	$4a-7 \pm \sqrt{a^2+12^2}$ **		(-4a - 1) = a + 144	$15a^2 - 56a - 95 = 0$	$\frac{19}{3}$ or $\frac{3}{3}$	- 15 or a = 5
Q1 Complex Numbers [NCK]	Assessment Objectives	Solving simultaneous equations involving complex numbers																					Ś	

Page 1 of 34

1 ago 1 01 o

www.KiasuExamPaper.com

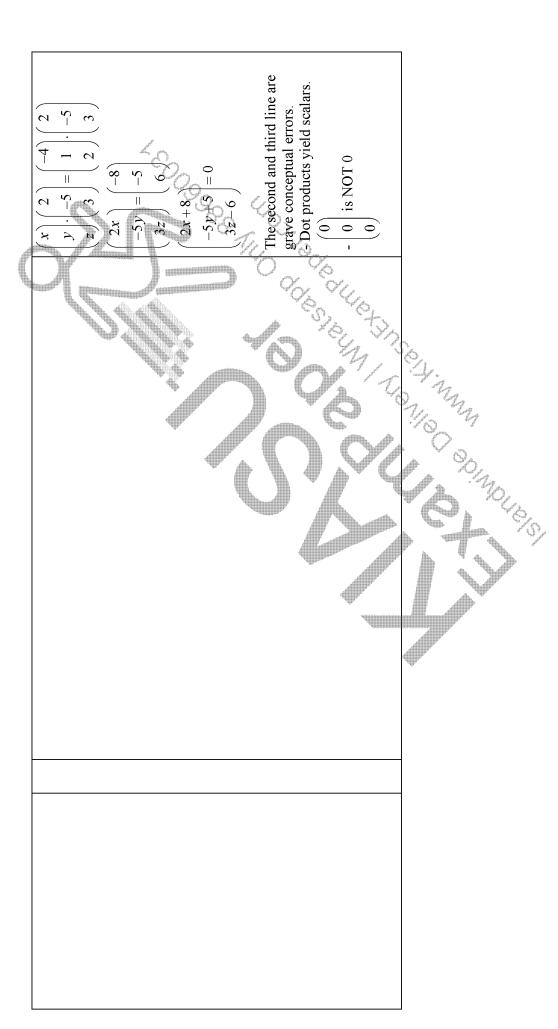
	Method ©:		
	$2z+1= w \tag{1}$		
	$2w - z = 4 + 24i \tag{2}$		
	$2z + 1 = a$ positive real number \Rightarrow	a = x + bi	
	From (2): $2(a+bi)-x=4$	From (2): $2(a+bi)-x=4+24i$	
	Comparing Real and Imagi	inary parts,	
	2a-x=4		
	$2h = 24 \Rightarrow h = 12$		
		- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	
	From (1): $2x+1 = \sqrt{a^2 + b^2}$	3)	
411	Substitute $b = 12$ and $x = 2$	2a-4 into (3)	
	$2(2a-4)+1=\sqrt{a^2+12^2}$		
		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
	$4\alpha - 7 = \sqrt{\alpha^2 + 12^2}$	**	
	$(4\alpha - 7)^2 - \alpha^2 + 14A$		
		ンくく	
	$16a^2 - 56a + 49 = a^2 + 144$		
	$15a^2 - 56a - 95 = 0$		
		<u> </u>	
	$\Rightarrow \alpha = -\frac{19}{}$ or $\alpha = 5$.		
	08 		
	SC 15 75		
	7-C		


Page 3 of 34

However $2z + 1 = a$ positive real number, When $x = -\frac{98}{15}$, $2z + 1 = 2\left(-\frac{98}{15}\right) + 1 < 0$ \Rightarrow reject $x = -\frac{98}{15}$ and $a = -\frac{19}{15}$ $\therefore x = 6, \ a = 5, \ b = 12$ $\Rightarrow w = 5 + 12i, \ z = 6$	The desire the time of the second to the sec

Page 4 of 34

[CSL]	
Assessment Objectives Solution	Examiner's Feedback
Find area of rectangles under the (a) When $\sqrt{1 - \frac{1}{n}}$	This question is generally
d simply using sigma	not well-attempted.
notation	As it is a snow
When $v=\frac{2}{n}$	question, candidates must
$n = \frac{1}{1} \frac{1}{(2)^2}$	realise they have to be
	explicit in the progression
	towards the result, i.e
n-1	they should display the
When $x = \frac{x}{\sqrt{x^2 + x^2}}$	relevant thought process
	through their workings
	and not skip any steps. In
A = -1	this case, what should be
$n = n + (1 + (1)^2 + (1 + (2)^2 + (n + (1) + (3)^2 + (n + (1) + (2)^2 + (n + (2)^2 +$	displayed is:
	1) how to obtain the
	height of at least first
	2 rectangles and last
$n^2\left(\sqrt{1+\left(\frac{x}{n}\right)^2}\right)^2\left(\sqrt{1+\left(\frac{x}{n}\right)^2}\right)^2\left(\sqrt{1+\left(\frac{x}{n}\right)^2}\right)$	rectangle
	2) present it as a sum
(n-1)n	
-+::+ 	
$(\sqrt{n^2+1})^2$	observing the terms
	make a sequence
	4) generalise the
$n = -\frac{1}{n} \left(\frac{1}{n^2 \pm 1^2} \right) \left(\frac{1}{n^2 \pm 3^2} + \dots + \frac{1}{n^2 + 3^2} + \dots + \frac{1}{n^2 + 3^2} \right)$	
	the series with a
	"sioma" notation
$=$ $\frac{1}{N_{\text{out}}}$ (shown)	
	Many candidates either
	skip steps or tried to put
	up smokescreens to
	somehow arrive at the
	tinal result


Page **5** of **34**

Page 6 of 34

Assessment Objectives	Solution	Examiner's Feedback
Find a relationship between three	(a) $\int \tilde{r} - \tilde{q}$ is parallel to \tilde{p}	Presentation of vectors is a
vectors		prevalent issue here. Many
Dogowith a line accountmost		candidates and not botner to
Describe a nine geometricany	$dv + \tilde{b} = \tilde{\lambda}$	include une unde, rendemig une
	The point R lies on a line that passes through the point Q and is parallel to the	resorters notentially risking it
	vector p.	being struck off completely
		Defing struck off completely.
		That are statomoute that so
		There are statements that go
		$ - \tilde{p}, \ \tilde{q}, \ \tilde{r}$ are collinear points
		- r lies on line
	25	It aixies the impression that the
		it gives the impression that the
		callulate facts the difference
		understanding of the difference
		between a vector and a point,
		or simply cannot be bothered to
		present properly.
Find a cartesian equation of a	(a)	Candidates are advised to be
plane		careful when copying over the
	$D = d \cdot b - d \cdot \overline{\lambda}$	vectors to work with.
Describe a plane geometrically		
		There are some candidates with
	(x)(2)	serious misconceptions about
		the dot product:
	(o(z)(s)(2)(3)	
	2x - 5y + 3z = -7	
	The point R lies on a plane that contains the point Q and is perpendicular to the	
	V · V · V · V	

Page 7 of 34

Page 8 of 34

Q4 Complex Numbers [NCK]		
Assessment Objectives	Solution	Examiner's Feedback
Understanding of Conjugate root	(a) There is only one(positive) real root in the equation $f(x) = 0$.	Poorly done.
Theorem and reasoning	Since the equation has all real coefficients, then the two other roots	Erom the creat there is east, one
	must be a <u>pair of complex conjugates.</u>	and the graph, mere is our one
		positive real root. The other two roots
		as the coefficients of the polynomial
		are all real.
		,
		However, students simply said that
		there are 2 imaginary roots. It should
		be a pair of complex conjugate roots.
Applying nature of roots	(b) Since $x = 1 - 2i$ is a root of $2x^3 - 7x^2 + 16x + c = 0$,	Well done.
	2(-11+2i)-7(-3-4i)+16(1-2i)+c=0	•
		A number of students solved part (c)
		tirst instead of part (b). Students must
	c = -15 (shown)	pay close attention to the number of
		marks allocated for each part and use
		the most efficient method to solve.
Procedure of finding complex	(c) Since all the coefficients are real $x = 1 + 2i$ is another root	Many students have forootten to
roots of a nolvnomial	2 3 4 2 1 7	mention the most fundamental concent
tools or a port morning	of $2x \rightarrow 2x + 16x + c = 0$.	of the conjugate root theorem
\	0 = C1 + x + 16x - 12	
	$[x \in (1+2i)][x = (1-2i)](2x-k)=0$	They simply assumed that the
	[(x-1)+2i)][(x-1)-2i)](2x-k)=0	conjugate root exists and went on to
	$[x^2-2x+5](2x-k)=0$	find the third real root.
	Comparing the coefficient of constant term (or by long division),	A number of students ignored the
>, •	·	"Without the use a calculator" and
	Therefore, the last root is $x = \frac{3}{2}$	used the calculator to identify one of
	7	

Page 9 of 34

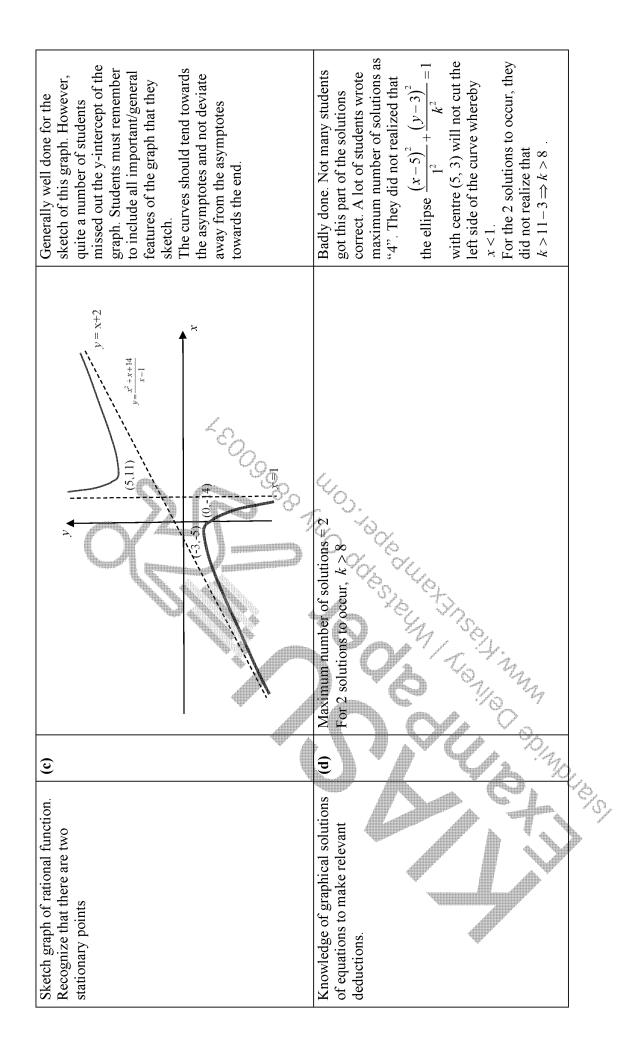
Deducing roots of a polynomial (d) $2x^3 - 7x^2 + 16x + c = 0$ by establishing relationship with another polynomial $\frac{1}{w} - \frac{1}{w} - \frac{1}{w} - 15 = 0$	"Hence" was clearly stated in the question but not adhered to.
Hence, the roots are $\frac{1}{w} = 1 - 2i$; $\frac{1}{w} = \frac{3}{2}$ $w = \frac{1}{1 + 2i} = \frac{1}{5} - \frac{2}{5}$; $\frac{1}{w} = 1 - 2i$; $\frac{1}{w} = \frac{3}{2}$ if the tensor of the roots are $\frac{1}{w} = 1 - 2i$; $\frac{1}{w} = \frac{3}{2}$ is $\frac{1}{w} = \frac{2}{3}$.	The relationship, i.e. the replacement should be clearly written in the solution. Students who succeeded in identifying the replacement often left the answer as $w = \frac{1}{1+2i}$ and $w = \frac{1}{1-2i}$ without further simplification.

Page 10 of 34

Q5 Sequences and Series [LWY]		
Assessment Objectives	Solution	Examiner's Feedback
Describe the relationship between	(a) Method O:	Students assume that if S_n is a a quadratic
sum to <i>n</i> terms and the <i>n</i> th term	The <i>m</i> th term, u_n , is always one degree less than S_n since	polynomial in n , then it must be an
(in terms of degree of the	$u_n = S_n - S_{n-1}.$	arithmetic progression. This is <u>not</u> true.
I colored	If S_n is quadratic, u_n would be linear but it is not since there is	The easiest way to solve would be to move
	no common difference between consecutive terms.	by contradiction. This is done by first
		assuming that S _n is a a quadratic
	adict	polynomial in <i>n</i> , followed by formulation
	Suppose $S_n = an^2 + bn + c$	of 4 equations with 4 unknowns and solving
	$S_n = an^2 + bn + c$	G.C. we can conclude that S_{\perp} cannot be a
		quadratic polynomial.
****	0-=7-4-2-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-	Note that for Method ②. all 4 equations
111111111111111111111111111111111111111	a + 3a + c = -0 + 17 = 0	must be formed. If a student used only 3
4	16a+4b+c=6+38=44	equations, there will be a solution.
	Using G.C., no solution found.	
	Hence S, cannot be a quadratic polynomial.	
Formulate and solve system of	(b) $S_n = \alpha n^3 + bn^2 + cn + cd$	Students seem to be confused over term and
linear equations		sum.
	a+b+c+d=-4	The question states that "first four terms of
	8a+4b+2c+d=-4-2=-6	a sequence of numbers are -4, -2, 12 and
	27a + 9b + 3c + d = -6 + 12 = 6	38". This should be interpreted as $u_1 = -4$,
	64a + 16b + 4c + d = 6 + 38 = 44	$u_2 = -2$, $u_3 = 12$ and $u_4 = 38$.
>	O Decision 1	
		However, many students interpreted it as $S_1 = -4$, $S_2 = -2$, $S_3 = 12$ and $S_4 = 38$.
	$S_n = 2n^3 - 5n^2 - n$	Upon solving, they actually got the answer

Page 11 of 34

		for part (c) instead.
Find the <i>n</i> th term using the sum to <i>n</i> terms	(c) $u_n = S_n - S_{n-1}$ = $2n^3 - 5n^2 - n - \left[2(n-1)^3 - 5(n-1)\right]$	A handful of students could not recall the general relationship between term and sum.
	$=2n^{3}-5n^{2}-n-\left[2\left(n^{3}-3n^{2}+3n-1\right)-5\left(n^{2}-2n+1\right)-n+1\right]$	Many students got the full credit by assuming that u_n follows a quadratic
	$=2n^{3}-5n^{2}-n-\left(2n^{3}-1.1n^{2}+1.5n-6\right)$	equation and proceeded to form 3 equations with 3 inchowing and solve it using G C
	$=6m^2-16n+6$	However, these students must be aware that if this is not a show question, they may not
		know that u_n follows a quadratic equation.
۳.	(p)	Many students were awarded full credit
sum using method of differences		easily for this part if they had applied method of difference and replacing u_{2m} and
		u_9 with the expression in part (c) and
		simplifying.
		Some students went on to apply
	Z . /	$\sum_{n=10}^{2m} \left(u_n - u_{n-1}\right) = \sum_{n=1}^{2m} \left(u_n - u_{n-1}\right) - \sum_{n=1}^{9} \left(u_n - u_{n-1}\right)$
	$=u_{2m}-R_{2m}$ $=u_{2m}-R_{2m}$	and often wrote the upper limits wrongly.
		Other students wrote
	$C = 24m^2 + 32m - 342$	$\sum_{n=10}^{2m} (u_n - u_{n-1}) = \sum_{n=10}^{2m} u_n - \sum_{n=10}^{2m} u_{n-1}.$ Most went
		on to simplify unsuccessfully because the number of terms should be
200		2m-10+1=2m-9.

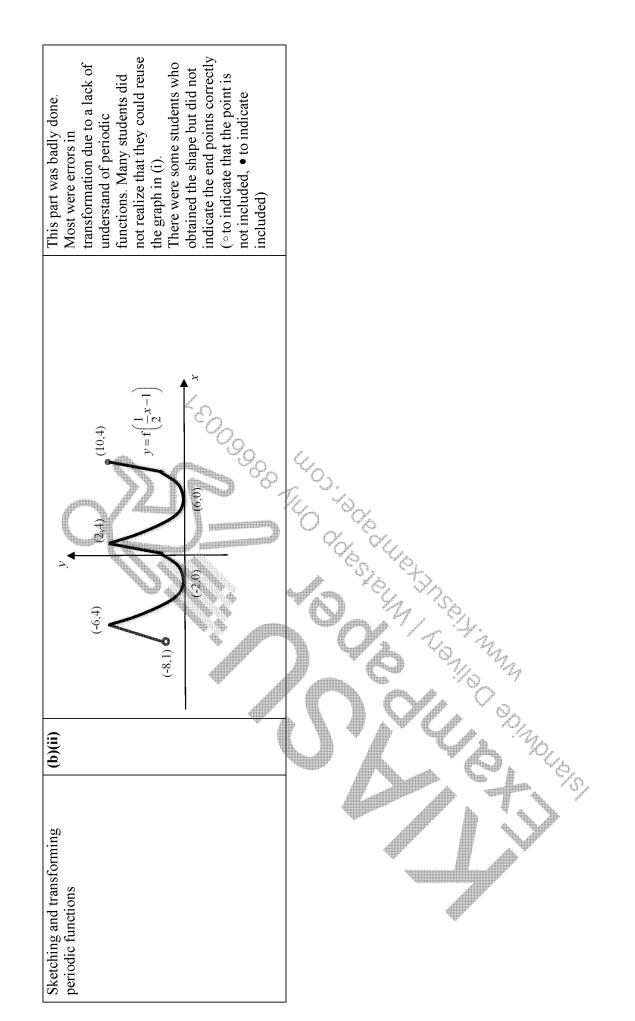

Page 12 of 34 www.KiasuExamPaper.com 138

A number of students attempted to simplify $u_n - u_{n-1}$ $= (6n^2 - 16n + 6) - \left[6(n-1)^2 - 16(n-1) + 6 \right]$ Unfortunately, they were unable to handle the simplification process. The correct answer should be $12n - 22$.	
	COO GOOD TO THE

Page 13 of 34

Q6 Graphing Techniques [NCK]		
Assessment Objectives	Solution	Examiner's Feedback
Understand the standard form of	(a) By observation, $d=1$	Students are careless in doing
the rational function	$n (x+2)(x-1)+n x^2+x-2+n$	long-division for the function.
	II .	Quite a number of students just
		let $y = \frac{ax^2 + bx + c}{1} = x + 2$ to
		x-1 find the unknowns a and b this
		is incorrect as the asymptote,
		y = x + 2, can never meet the
		curve C.
Establish condition for stationary	(b) x²+x+c² (c)	Most students can differentiate
points to exist by use of	20°	function y correctly while some
discriminant		are careless in applying the
	$\frac{dy}{dx} = \frac{(2x+1)(x-1) - (x + x + c)}{x} = \frac{x + 2x - 1 - c}{x}$	Quotient Rule. However, quite a
	$\left \frac{dx}{dx}\right = (x-1)^2$	number of students got stuck at
	$\frac{1}{2}$	$x^2 - 2x - 1 = c$ after they let
i	For stationary points to occur, $\frac{1}{dx} = 0$	dy O while come attribute
		$\frac{-}{dx} = 0$, while some students
	House countries which well and and and and a	even wrote
	Therefore, equation must yield \angle real roots, i.e. $L > 0$	4 4612(1)
	$(-2)^2 - 4(1)(-c-1) > 0$	$c = \frac{c \pm \sqrt{4 - 4(1)(-1)}}{c}$. Students
	4+4c+4>0	2
		need to read the question
		carefully, the question in fact
		asked for "range of values of c

Page 14 of 34


Page 15 of 34

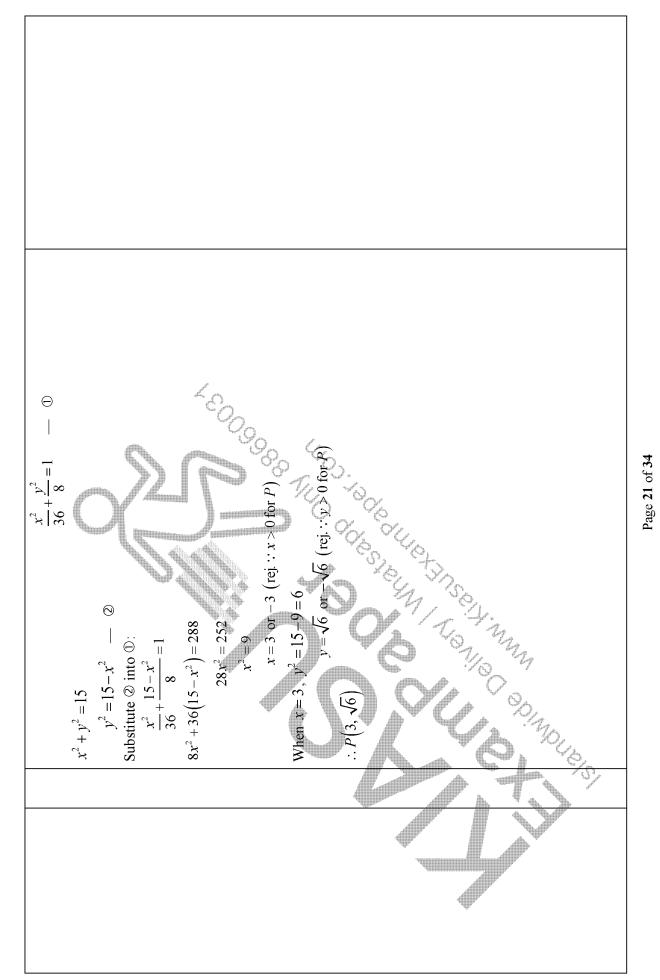
Q7 Functions [NCK]		
Assessment Objectives	Solution	Examiner's Feedback
and using	(a)(i) $ y = y = f(x) $	Most students did not revise the
the correct horizontal-line test	(0,4)	topic thoroughly.
		For the sketching of graphs in
		Functions, it is important to
		reflect clearly the Domain of a
		function i.e. to indicate start and
	x = (2.0) x	end points; and using o to
		indicate that the point is not
	The line $y = 2$ cuts the graph of $y = f(x)$ twice.	included, or • to indicate that
		the point is included.
	Hence I is not a one-one function and so I does not exist.	The given function is a
		piecewise function, and the
		difference in gradients of the 2
		equations is not clearly shown.
		For the explanation of the
		existence of the inverse
4		Caristian of my my and a
		function, many students stated
		"any horizontal line,
		$y = k, k \in \mathbb{R}$ will cut the curve
		at two points."
		This is not true A horizontal
		line will only out the function
*		THE WILL OILLY CUT UILS TUILS OIL
		twice when $0 < y < 4$. Hence
		the best approach is to give an
		example to illustrate the cutting
		of two points.
	(a)(ii) k = 2	Most students were able to state
function to exist and defining it in	$v = (v-z)^2$	the value of k correctly.
context of piece-wise function		Many students did not consider
	$x = 2 - \sqrt{y}$ or $2 + \sqrt{y}$ (reject as $0 < x \le 2$)	both positive and negative when
	$\therefore f^{-1}(x) = 2 - \sqrt{x}, 0 \le x < 4$	taking square root, $\pm \sqrt{}$
	Dana 16 of 34	

Page 16 of 34

	(a)(iii) For composite fg to exist, $R_g \subseteq D_f$	Most students included both
exist and defining it in context of processive function	From graph/observation, $R_g = (3, 4]$.	equations when finding the
	Hence, only second 'piece' of fix relevant: $3x-8$, $3 < x \le 4$	They did not check the
	Therefore, $fg: x \mapsto 3(e^x + 3) - 8$, $x \in \mathbb{R}$, $x \le 0$	conditions for the existence of a
		composite function $R_g \subseteq D_f$
		Only one of the two equations
		satisfies the condition for fg to
		exist.
		Most student who were able to
		find the correct composite
		function read the question
		carefully and managed to
	900	present their answers "in similar
		form"
w to handle peri	(b)(i) $f(25) = f(1+6\times4) = f(1) = 1$	Most students were able to
functions	$f(-8) = f(4-3\times4) = f(4) = 4$	evaluate calculate the outputs
		correctly.
		There were some students who
		left their answers as
		f(25) = f(1) and $f(-8) = f(4)$
		without evaluating the value.

Page 17 of 34

Page 18 of 34


	Examiner's Feedback	Some students used $\frac{d\theta}{dx}$ instead of	$\frac{\mathrm{d}x}{\mathrm{d}\theta}$	Many students got stuck after they	Students need to practice their	of formulas from the MF26. Some students did not know how to								
		$x = \sqrt{15} \sin \theta$	$\frac{\mathrm{d}x}{100} = \sqrt{15}\cos\theta$	Ap		0.000 /si/	A POST	Alst-x2	3.50			in the same of the	,	
s [CSL]		(a) $\int \sqrt{15-x^2} dx$	$ = \int \sqrt{15 - x^2} \frac{\mathrm{d}x}{\mathrm{d}\theta} \mathrm{d}\theta $	$=\int \sqrt{15-15\sin^2\theta} \sqrt{15\cos\theta} d\theta$	$=\int \sqrt{15(1-\sin^2\theta)}\sqrt{15}\cos\thetad\theta$	$=15\int \cos^2\theta d\theta$	$=15$ $\frac{\cos 20 + 1}{2} d\theta$	$= \frac{15}{2} \left(\frac{\sin 2\theta}{2} + \theta \right) + C$	$= \frac{15}{2} (\sin \theta \cos \theta + \theta) + C$	$=\frac{15}{3}\left[\frac{x}{x} \cdot \sqrt{15-x^2} + \sin^{-1}\left(\frac{x}{x^2}\right)\right] +$	$= \frac{-\frac{1}{2}x\sqrt{15-x^2+\frac{1}{2}\sin^{-1}(\frac{x}{\sqrt{15}})} + C}{2}$			
Q8 Parametric Equations [CSL]	ves	Apply integration by substitution												

Page 19 of 34

www.KiasuExamPaper.com 145

Many students failed to take \pm	when they square root $\sin^2 \theta = \frac{3}{4}$	Some students did not give reason for rejection of negative root.
Method \oplus : $x = 6\cos\theta$, $y = 2\sqrt{2}\sin\theta$ — \oplus	$x^2 + y^2 = 15$ — ©	$(6\cos\theta)^{2} + (2\sqrt{2}\sin\theta)^{2} = 15$ $36(1-\sin^{2}\theta) + 8\sin^{2}\theta = 15$ $36-36\sin^{2}\theta + 8\sin^{2}\theta = 15$ $\sin^{2}\theta = 25$ $\cos^{2}\theta = \cos^{2}\theta = \sin^{2}\theta = 1$ $\cos^{2}\theta + \sin^{2}\theta = 1$ $\cos^{2}\theta + \sin^{2}\theta = 1$ $\cos^{2}\theta + \sin^{2}\theta = 1$
(q)		
Solve point of intersection for	parametric and cartesian equations	

Page 20 of 34

www.KiasuExamPaper.com

:	Some students did not realise they could use the earlier result for C ₂ . Some students found C ₂ - C ₁	
<u>Method ⊕:</u>	Area of region $R = \int_{0}^{3} y_{2} dx - \int_{0}^{3} y_{1} dx$ $\frac{1}{\cos^{2} C_{2}} \frac{1}{\cos^{2} C_{2}} \frac{1}{\cos^{2} C_{2}} \frac{1}{\cos^{2} C_{2}}$ For C ₂ : $\int_{0}^{3} y_{2} dx = \int_{0}^{3} \sqrt{15 - x^{2}} dx$	115 sim 2 si
(c)		
Area bounded by curves		

Page 22 of 34 www.KiasuExamPaper.com 148

Some students put in the limits the	wrong way. It is not correct to assume that the smaller value is always the lower limit.	Students need to note the correct form that the question is asking for. ie. $\frac{3}{\sqrt{15}}$ is not acceptable.
For C ₁ :	$\int_{0}^{3} y_{y} dx = \int_{\frac{\pi}{2}}^{\frac{\pi}{2}} 2\sqrt{2} \sin \theta \frac{dx}{d\theta} d\theta$ $= \int_{\frac{\pi}{2}}^{\frac{\pi}{2}} 2\sqrt{2} \sin \theta (-6 \sin \theta) d\theta$ $= -6\sqrt{2} \int_{\frac{\pi}{2}}^{\frac{\pi}{2}} 2 \sin^{2} \theta d\theta$ $= -6\sqrt{2} \int_{\frac{\pi}{2}}^{\frac{\pi}{2}} (1 - \cos 2\theta) d\theta$ $= -6\sqrt{2} \int_{\frac{\pi}{2}}^{\frac{\pi}{2}} (1 - \cos 2\theta) d\theta$ $= -6\sqrt{2} \int_{\frac{\pi}{2}}^{\frac{\pi}{2}} (1 - \cos 2\theta) d\theta$ $= -6\sqrt{2} \int_{\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{1}{2} \sin (\frac{2\pi}{2})$ $= -6\sqrt{2} \int_{\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{1}{2} \sin (\frac{2\pi}{2})$ $= -6\sqrt{2} \int_{\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{1}{2} \sin (\frac{2\pi}{2})$ Area of fregion $R = \frac{\pi}{2} \sqrt{6} + \frac{15}{2} \sin^{-1} \left(\frac{\sqrt{15}}{5}\right) - \sqrt{2\pi - \frac{3}{2}} \sqrt{6}$	$=\frac{15}{2}\sin^{-1}\left(\frac{\sqrt{15}}{5}\right)-\sqrt{2}\pi$

Page 23 of 34

www.KiasuExamPaper.com 149

þd	Students who tried method 2 can at most get the marks for obtaining C2.	The expression for C ₁ is not integrable unless a substitution is given.	
where $m = \frac{15}{2}$ and $k = \frac{1}{5}$	Area of region $R = \int_0^3 y_2 dx - \int_0^3 y_1 dx$	For C ₂ : $\int_0^3 y_2 dx = \int_0^3 \sqrt{15 - x^2} dx$ $= \left[\frac{1}{2} x \sqrt{15 - x^2} + \frac{15}{2} \sin \left(\left[\frac{x}{x} \right] \right]^3 \right]$	$ \frac{3}{2}\sqrt{6 + \frac{15}{2}\sin^{-1}\left(\frac{3}{\sqrt{15}}\right)} $ For Chi $ \frac{8}{8} = \frac{3}{2}\sqrt{6 + \frac{15}{2}\sin^{-1}\left(\frac{3}{\sqrt{15}}\right)} $ $ \frac{8}{8} = \frac{3}{2}\sqrt{6 + \frac{15}{2}\sin^{-1}\left(\frac{3}{\sqrt{15}}\right)} $ $ \frac{1}{8}\sqrt{4} \times \frac{2}{3}\sqrt{16} = -4 \times \frac{1}{3}\sqrt{16} = -4 \times \frac{1}{3}\sqrt{16}\sqrt{16} = -4 \times \frac{1}{3}\sqrt{16}\sqrt{16}\sqrt{16} = -4 \times \frac{1}{3}\sqrt{16}\sqrt{16}\sqrt{16}\sqrt{16} = -4 \times \frac{1}{3}\sqrt{16}\sqrt{16}\sqrt{16}\sqrt{16}\sqrt{16}\sqrt{16}\sqrt{16}16$

Page 24 of 34

www.KiasuExamPaper.com 150

Formulate an equation based on (
tions in the context of	(a)	Length of $BC = 2r \cos \theta$	This part of the question was
given conditions in the context of the question.		Length of $CD = 2r \sin \theta$	generally well done. Majority of the students were able to
		[40.04.41]2 4	find the length of AF/BC and
		P = L[AB + BC + CD]	CD/EF using the properties of
		$= 2[4r + 2r\cos\theta + 2r\sin\theta]$	a right-angled triangle, and
		$=4r(2+\cos\theta+\sin\theta)$ (shown)	eventually show the perimeter of <i>ABCDEF</i> .
Solve local maxima and minima	(p)		This part of the question was
problems, and use the		$\frac{d\theta}{d\theta} = 4r(-\sin\theta + \cos\theta)$	generally well-attempted.
tirst derivative test or the second		At maximum P, $4r(-\sin\theta + \cos\theta) = 0$	Students who attempted this
CSI.		$\theta = \theta$ wis	part of the question generally
			knew the general procedure to
		tan $\theta \neq 0$	answer the question. However,
		2) H S	a significant number of
4	Á		students overlooked some of
			the steps and/or made algebraic
*			slips.
			Common mistakes include:
	D	(4) 4 (4)	1. Not knowing r is a constant
•			and treated it like a
			variable.
	G,	0> 0 0 < <u>P</u>	2. Differentiating with respect
			to r instead of θ .
*			
	m, di	/ 	5. $\frac{\partial}{\partial \theta} = (-\sin\theta + \cos\theta)$
	, ,		[Missing 4r]
#	50)	Hence, P is maximum when $\theta = \frac{\pi}{2}$.	4. $\frac{dP}{dr} = 4r(2 - \sin\theta + \cos\theta)$
	,	4	
			5. $\sin \theta = \cos \theta \implies \tan \theta = 0$

Page 25 of 34

Page 26 of 34

www.KiasuExamPaper.com 152

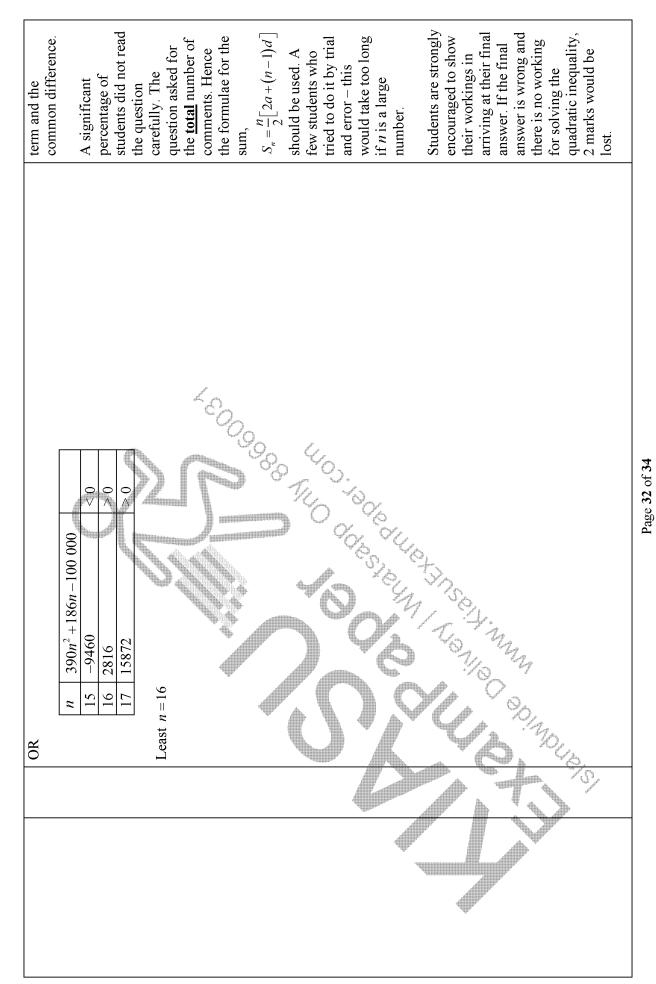
4. Always remember to perform the derivative test (1st or 2nd) and state the conclusion unless the	question says there is no need for the derivative test. S. Review the basic algebraic manipulation skills, e.g. rationalizing denominator, completing the square, partial fractions, long division etc.	
		See Allo de diservirse de management de la companya

Page 27 of 34

stants	(c) 3 minutes = 180 seconds	This part of the question was
when given conditions in the	$4r(2+\sqrt{2})$	poorly attempted. Weak
context of the question.	Time to complete one loop = $\frac{1}{2}$	algebraic manipulation was
	9	observed.
	To find maximum value of r,	Common mistakes include:
	$(0, -1)^{n}$	1. Mis-interpreting the
	$\frac{1}{10000000000000000000000000000000000$	question and used rate of
		change to attempt this
	$r = 180 \times 6$	
	4(2-\2)	2. Poor algebraic
		manipulation, especially
	$=\frac{270}{-3} \times \frac{2-\sqrt{2}}{2}$	dealing with square roots,
	$C_{k-c}(C_{k+c})$	i.e. ianonalizing ule
		denominator.
- TI	$=135(2-\sqrt{2})$	
		Students should take note of
	=270-135√2	the following:
4		1. Review the basic
		algebraic manipulation
		skills, e.g. rationalizing
		denominator, completing
		the square, partial
		fractions, long division
		etc.
Reason and justify the	(d) $A_{roc} > A_{roc} > A_{roc} = $	This part of the question was
affordability/feasibility in the	$\frac{r_1 c_0}{2} c_1 c_2 c_3 c_3 c_3 c_3 c_3 c_3 c_3 c_3 c_3 c_3$	poorly attempted, although
context of the question.	$-2r^2\cos\theta\sin\theta$	students knew to find the cost
		needed and compare with
	Area of ABCDEF = $(4r)(2r)+2(2r^2\cos\theta\sin\theta)$	\$10000.
	$=8r^2+4r^2\cos\theta\sin\theta$	Common mistakes include:
		1. Unable to formulate the
Þ	When $\theta = \frac{\pi}{4}$ and $r = 270 - 135\sqrt{2}$,	
	1	2. Missing out the square, i.e

Page 28 of 34 www.KiasuExamPaper.com 154

	$-135\sqrt{2}$) ² + 4 $\left(270 - 135\sqrt{2}\right)^2 \cos\frac{\pi}{4} \sin\frac{\pi}{4}$	0000 1 T 1 D 1 D 1 D 1 D 1 D 1 D 1 D	
Cost of planting grass f	$= 0.15 \times \left[8(270 - 135\sqrt{2}) \right]$	= \$9380.75 < \$10000 Hence management can	The Solary


Page 29 of 34

Q10 Sequences and Series [LWY]	ies [LWY]	
Assessment Objectives	Solution	Examiner's
		reeuback
Identify that the	(a)	This part was
sequence is a G.P.	mth day Number of daily views at the end of mth day	generally well done.
	1 1196	
	2 3(1196)	Students were able to
		recognize this was a
	$ 3 $ $ 3^{2}(1196) $	GP and identified the
		common ratio
	G.P. with first term = 1196 and common ratio = 3	correctly.
	Number of daily views at the end of the third day	However, some
	22 (110%)	students did not read
	(1790) C=	the question
	=10764	carefully. The
		question asked for
		the daily views (not
		the total views).
		Hence the formula
		for the general tern,
4		$u_n = \alpha r^{n-1}$ should be
		nsed.
Apply the formula for	(b) Total number of views at the end of the 7 th day	This part was
the general term and	$1/196(3^7-1)^{1/2}$	generally well done.
make a decision based	3-1	Como chidonte did
	1307338	Some students and
duestion	0.70707	not read the question
	000 0005>	carefully. The
	The video will not go viral.	question asked for
		the total number of
		views. Hence the
		formulae for the

Page 30 of 34

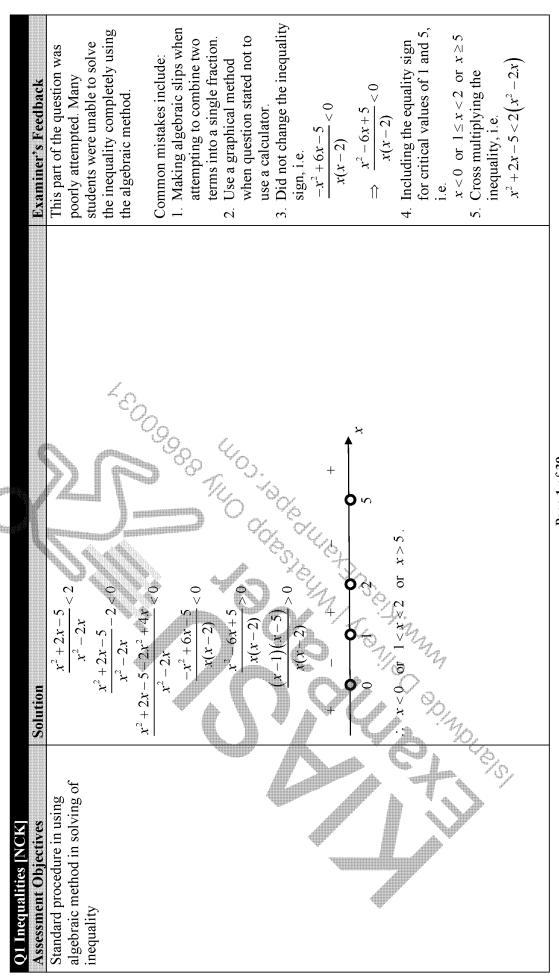
sum, $S_n = \frac{a(r^n - 1)}{r - 1}$ should be used.	students who found the sum without the formula (doable in	this question since the number of terms was small) – they are strongly encouraged to recall and apply the GP sum.	Some students did not explain clearly why the video was not viral. There is a need to compare the value found to the criterion condition in order to make the conclusion.	This part was not well done. Students were able to recognize this was an AP and identified the common difference. A few students mixed up the first
				Identify that the sequence is a A.P. and apply the sum to first n $576n + 390n^2 - 390n > 100\ 000$ $390n^2 + 186n - 100\ 000 > 0$ Using G.C., $n < -16.253$ or $n > 15.776$

Page 31 of 34

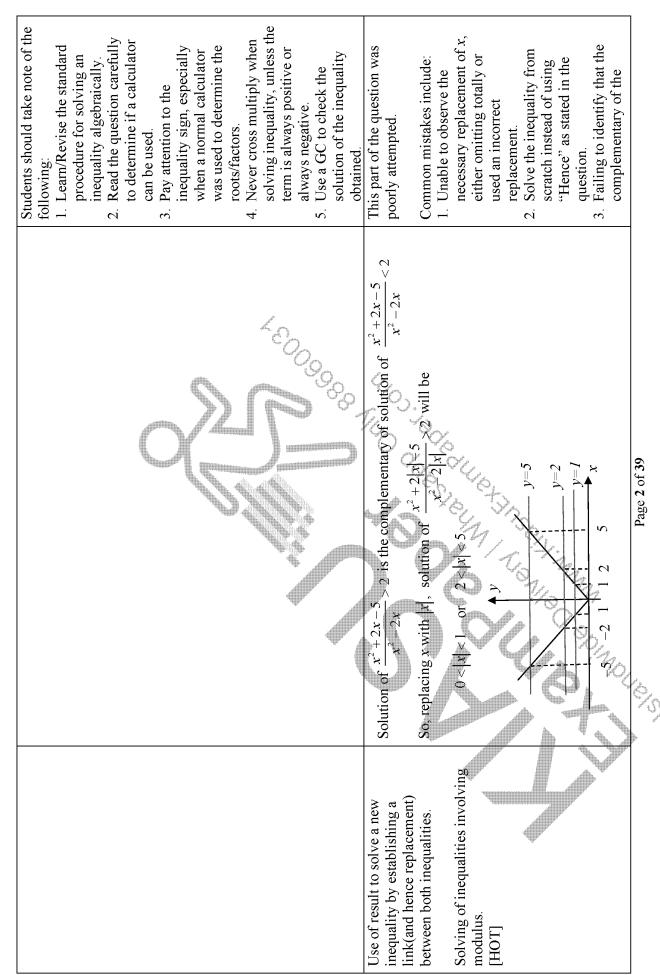
1 age 32 of 54

www.KiasuExamPaper.com

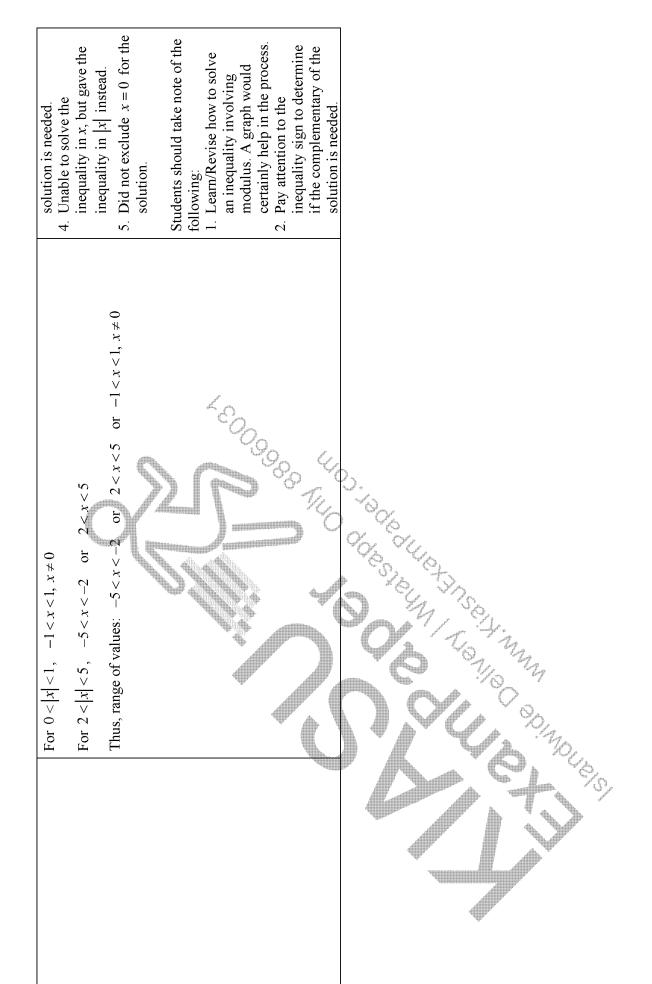
Conve a partern and		Inis part was not
	$= \frac{16}{2} \left[2(576) + (16-1)(780) \right]$ = 100 000 + 2816 (from G.C. table)	well done.
	=102816 $=102816$	A significant
	n Start of Dav End of Dav	students failed to
	$102\ 816-w$	write the finite series
	$=1.03(102\ 816)-1.03w$	applying the formula
		for GP sum. A minimum of the first
	$= (1.03)^2 (102\ 816) - (1.03)^2 \ w - 1.03 w$	2 terms must be
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	written so that a GP can be identified and
	0"	the last term must be
	Number of comments by the end of Day n	written to indicate the sum is finite.
	=(1.03) (102.816) - (1.03) w - (1.03) (w 1.03w)	
	$=(1.03)^{n}(102.816)-[(1.03)^{n}w+(1.03)^{n-1}w++1.03w]$	Students are strongly
		encouraged to write
	$1.03w / (1.03)^n - 1.0$	the finite series for
4	$=(1.03)^{\circ}(102.816) - \frac{1}{103} - \frac{1}{103}$	Day 3 or more if
		they are unsure of
	$=(1.03)^n(102\ 816) - \frac{193^n}{3} \left[(1.03)^n - 1 \right] $ (shown)	the pattern.
	where M = 102816	Most students failed
		to identify the total
•		number of comments
# , \$\int\{\pi}		at the start of Day 1
		which was the total
		number of comments
<u> </u>		at the end of Day 16
		(from part (c)).


Page 33 of 34

to find a range for the		attempted.
unknown	$\frac{103w}{3} \left[(1.03)^{31} - 1 \right] \ge (1.03)^{31} (102.816)$	Students should
		attempt this part by using the result in
	$w \ge 4991$	part (d) even though
		they might not be able to show the
		result.
		Some students failed
		to realize the answer
		should be a range of values of w .
	The state of the s	


Page 34 of 34

www.KiasuExamPaper.com 160


CATHOLIC JUNIOR COLLEGE H2 MATHEMATICS 2023 JC2 PRELIM EXAM PAPER 2 SOLUTION

Page 1 of 39

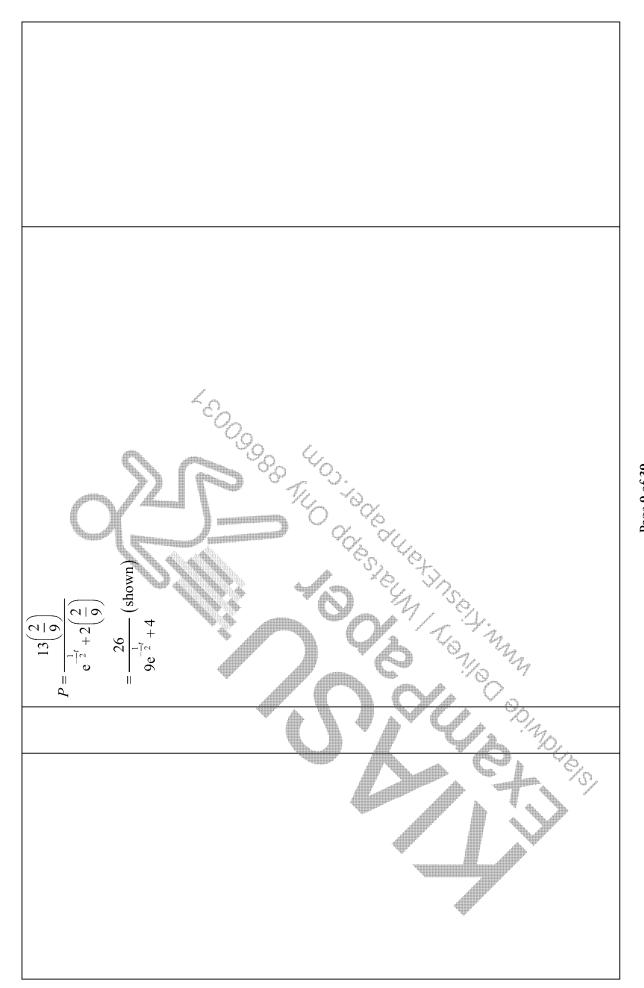
www.KiasuExamPaper.com 162

Page 3 of 39

Q2 Maclaurin Series [CSL]		
Assessment Objectives	Solution	Examiner's Feedback
Apply product rule	(a) $y = e^{-x} \sin x + x - 1$	This part of the question was
		well attempted. Most students
	$\frac{2}{4x} = e^{-x} \cos x - e^{-x} \sin x + 1$	were able to obtain full credit
		for this part of the question.
	$= e^{-(\cos x - \sin x) + 1}$	
	,	Common mistakes include:
	$\frac{1}{4x^2} = e^{-x}(-\sin x - \cos x) - e^{-x}(\cos x - \sin x)$	1. Making algebraic slips
		when differentiating, i.e.
	$=-2e^{-\cos x}$ where $\kappa=-2$ (shown)	forgot the negative sign.
		2. $\frac{dy}{dy} = (-e^{-x})\cos x + 1$
		$dx \rightarrow xp$
	255	[Did not use product rule
		but differentiating the
		product of the terms
		separately]
		,
4		Students should take note of
		the following:
		1. Practise the techniques of
		differentiation (and
		integration). This is
		important when answering
		calculus questions.
		2. Get exposed to solving
		trigo equations. Use the
		calculator to check if
		needed.
Carry out repeated differentiation	(6) $\frac{d^3y}{d^3y} = -2e^{-x}(-\sin x) - (-2e^{-x})\cos x$	This part of the question was
	$dx^3 = 2c$ ($\sin x$) ($2c$) $\cos x$	well attempted. Most students
	$(v_{\alpha,\alpha},v_{\alpha,\alpha},v_{\alpha,\alpha})^{x-\alpha}C$	were able to obtain full credit
		for this part of the question.
		Common mistakes include:
	D 4 . C.O.	

Page 4 of 39

1. $2 \cdot \frac{x^3}{3!} = \frac{2}{3} x^3$ 2. Evaluating the values of $f(0)$, $f'(0)$, $f''(0)$ and $f'''(0)$ incorrectly. Students should take note of the following: 1. Learn/Revise the procedure of finding the Maclaurin Series expansion.	This part of the question was poorly attempted. Common mistakes include: 1. $\cos 2x = 1 - \frac{x^2}{2!}$ Fail to replace x with $2x$] 2. Unable to apply Binomial expansion to $(1-2x^2)^{-1}$. 3. $(1-2x^2)^{-1} = 1 - \frac{1}{2x^2}$ [Incorrect expansion] 4. Performing long division Students should take note of the following: 1. Learn/Revise how to apply Binomial Expansion 2. Review the strategy to express an algebraic fraction as a power series
When $x = 0 : f(0) = -1$ $f''(0) = 2$ $f'''(0) = -2$ $f''''(0) = 2$ $f''''(0) = 2$ $f''''(0) = 2$ $f''''(0) = 2$ $y = -1 + 2x - 2 \cdot \frac{x^2}{2!} + \frac{2}{3!} + \dots$ $= -1 + 2x - x^2 + \frac{x^3}{3} + \dots$	Apply small angle approximation (c) $e^{-x}\sin x + x - 1 = -1 + 2x - 1x^{2} + \frac{x^{3}}{3} + \cdots$ $= -1 + 2x - 1x^{2} + \frac{x^{3}}{3} + \cdots$ $= -1 + 2x - 1x^{2} + \frac{x^{3}}{3} + \cdots$ $= -1 + 2x - 1x^{2} + \frac{x^{3}}{3} + \cdots$ $= -1 + 2x - 1x^{2} + \frac{x^{3}}{3} + \cdots$ $= -1 + 2x - 3x^{2} + \frac{13}{3}x^{3} + \cdots$ $= -1 + 2x - 3x^{2} + \frac{13}{3}x^{3} + \cdots$


Page 5 of 39

Page 6 of 39

Examiner's Feedback	Most students were able to	separable differential equation.	Students had two main methods, Method 1 and 2.	Many students did not put modulus sign for $\ln 13-2P $
Q3 Differential Equations [CSL] Assessment Objectives Solution	(a) Method 1 $\frac{1}{1} = \frac{M}{M} + \frac$	owed otain	When $P = \frac{13}{2}$ N = $\frac{2}{13}$ When $P = \frac{13}{2}$ N = $\frac{2}{13}$ $\frac{P(13-2p)}{P(13-2p)} = \frac{1}{13P} + \frac{2}{13(13-2p)}$ $= \frac{1}{13} \left(\frac{1}{p} + \frac{2}{13-2p} \right)$ $= \frac{1}{13} \left(\frac{1}{13-2p} + \frac{1}{2} \right)$	$\ln\left \frac{P}{13-2P}\right = \frac{1}{2}t + C$ $\left \frac{P}{13-2P}\right = e^{\frac{1}{2}t+C}$

Page 7 of 39

Page 8 of 39

Page 9 of 39 www.KiasuExamPaper.com 169

|--|

Page 10 of 39

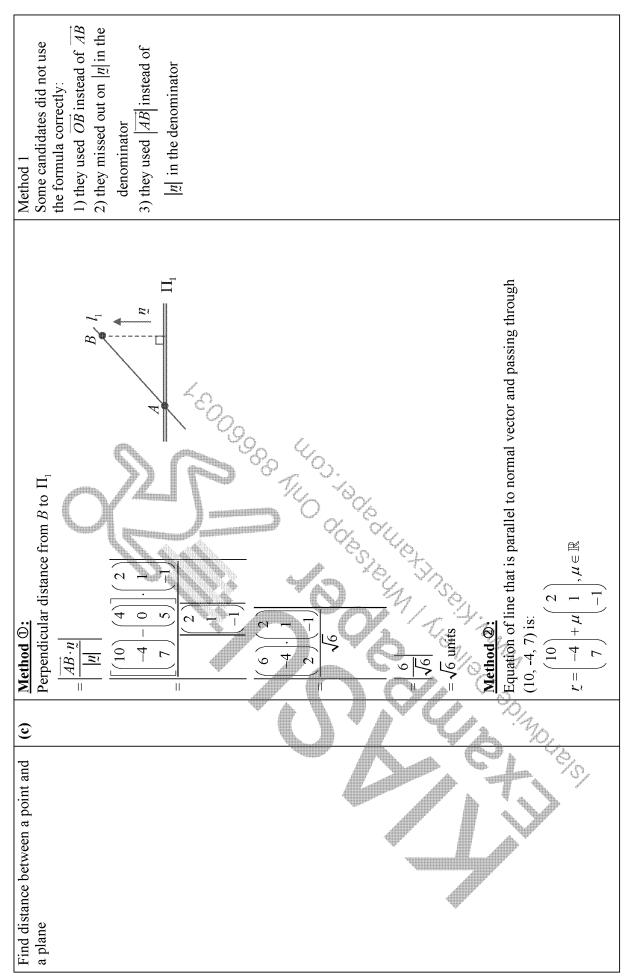
Page 11 of 39

www.KiasuExamPaper.com 171

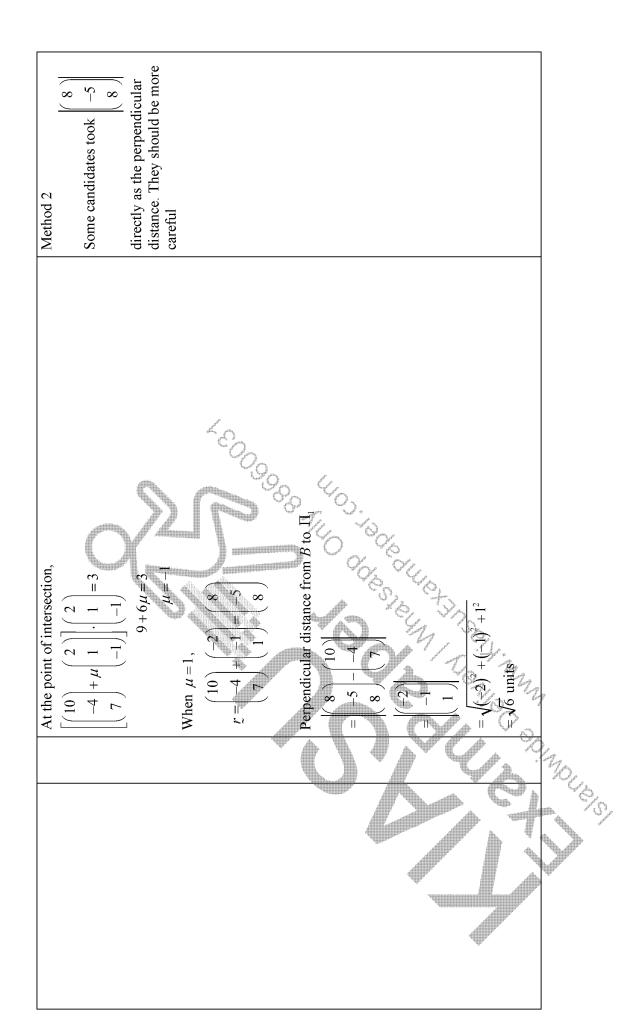
Table method cannot be used as the number of months is not an integer.	
Understand the context and solve (b) When $P=4$, $4 = \frac{26}{9e^{\frac{1}{2}t} + 4}$ $4 = \frac{26}{18}$ $-\frac{1}{2} = \frac{1}{18}$ $-\frac{1}{2} = \frac{1}{18}$ $-\frac{1}{2} = \frac{1}{18}$ It takes 2.56 months for the number of people who downloaded Ginseng Impact to double since the launch	The state of the s

Page 12 of 39

Understand that in the long run implies that time approaches	(c)	As $t \to \infty$, $e^{-\frac{1}{2}t} \to 0$,	Students who substituted a large value of t to obtain the
infinity		$P \rightarrow \frac{26}{4}$ Number of people that downloaded Ginseng Impactful in the long run is	answer did not get the credit. They need to understand the concept of limits.
		$\frac{26}{4}(1000) = 6500.$	
Sketch graph in the context of the	(p)		Poor shape for most students.
		P (in thousands) $P = \frac{26}{9e^{-1/4} + 4}$	
		Sec. The sec.	
4		(in vears)	


Page 13 of 39

Assessment Objectives	Solution		Examiner's Feedback
n a plane	(a) Ve	Vector equation of the line l is	Presentation issues abound.
and line		(-2) (3)	Some examples are:
		,	1) In writing the line
		$\tilde{\Gamma} = A + \Lambda -L , \Lambda \in \mathbb{N}$	(-2) (3)
		3) (1)	
			$\tilde{L} = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1$
	Let	Let $lpha$ be the acute angle between the normal vector of plane Π , and line l	(3) (1)
	1		the r is either missing or
			without the tilde.
		[-1](1)	(2)(3)
	σ	$\alpha = \cos \frac{1}{2} \frac{1}{3}$	2) $\begin{vmatrix} 1 & -2 \\ 1 & \text{is mistakenly} \end{vmatrix}$
4			
			written as $\begin{vmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{vmatrix} = 2$
			, ,
		V6V14 x05	
	1	- 70 803 or 12373	which means an entirely
			different thing altogether
			different timig arrogemet.
		acute angle between the plane 11, and line l is	
		00° 96° 00° 1 13373	
		2-1.23/3	Candidates also have to be
			aware that, in the case of
		9.1 or 0.553	tinding angle between line and
	Q		plane, they have to subtract the
		7	result from 90° or use \sin^{-1}
	1 100		


Page 14 of 39

between a line and a plane			giving the requirement of the duestion and that is to give the coordinates as the answer.
	Solly Co.	THO HOSPINANT CONTINUES OF THE PARTY OF THE	

Page 15 of 39

Page 16 of 39

Page 17 of 39

Equation of plane Find the equation of the line of intersection between 2 planes without GC A vector parallel to $\begin{pmatrix} 2 \\ 2 \\ -1 \end{pmatrix}$	$\stackrel{\times}{\longrightarrow}$	question and that is to give the cartesian equation of the plane as the answer.
tation of the line of between 2 planes	\mathbb{H}_2	
nation of the line of between 2 planes		
between 2 planes	$ \vec{x} \cdot \vec{x} = 4 \cdot 5 $ $ \vec{x} \cdot \vec{x} = 4 \cdot 5 $ $ \vec{x} = 4 \cdot 5 $ $ x + 5y + 7z = 39$	
	Note that point (4, 0, 5) lies on both planes Π_1 and Π_2 .	This part is not well attempted.
	llel to the line of intersection of both planes is $\begin{pmatrix} 2 & (1) & (12) & (4) \end{pmatrix}$	Many candidates are aware that to obtain the direction of the
	$\mathbb{C}^{\mathbb{L}}$	line, they can take the cross-
	(-1) (-1) (-2) (3)	two planes involved.
Vector equation	/ector equation of the line that lies in both planes is	What they did not realize is that the common point to both
To	$\frac{1}{\mu}$	planes is the point found on (b)
5) 24 1/20	(5) (3)	

Page 18 of 39

Examiner's Feedback	The Table of Outcomes and	calculation of individual	probabilities is preparation	work, useful for subsequent	calculations. It is not	essential and hence not	given any cream for this cream of the control of the context of th									Most students were able to			probabilities.										
J. Solution	Tables of outcomes	1 2 3 4	1 3 3 4 5	2 3 6 5 6	3 4 5 9 7	4 5 6 7 12	141	$P(\text{spin}=1) = \frac{1+7}{360} = \frac{2}{5} = \frac{4}{10}$	B(200) 108 3	$r(spin(=2) = \frac{360}{360} = \frac{10}{10}$	P(suin_3) 72 _ 1 _ 2	$(1.8pm = 3) = \frac{360}{360} = \frac{5}{5} = \frac{10}{10}$	36 1 25 2	$F(\text{spin} = 4) = \frac{360}{360} = \frac{10}{10}$	100 Sept 100	P(X=6)	D(min = 0, min = 0) D(min = 0, min = 0)	$-\Gamma({ m spin}_1-2,{ m spin}_2-2)$ $\Gamma({ m spin}_1-2,{ m spin}_2-4)$ $\Gamma({ m spin}_1$	$\left\lceil \left(\frac{3}{3}\right) \left\lceil \frac{3}{3} \right\rceil \right\rceil_{+} \left\lceil \left(\frac{3}{3}\right) \left\lceil \frac{1}{3} \right\rceil \right\rceil$	[(10)(10)] [(10)(10)]			in the second se	ing of the second secon		in a second	in a second	ing of the second secon	The solution of the solution o
Q5 Discrete Random Variables [LL] Assessment Objectives	ot	essential. Students are able to	make a systematic list or other	heuristics and techniques to	identify all possible cases.											Identify and list the possible (a)	X	criteria $X = 6$ and calculate	bability values	each outcome									The state of the s

Page 19 of 39

Analyse and identify all possible cases and calculate all associated probabilities	(a)	P(X = 3) = $P(\text{spin}_1 = 1, \text{spin}_2 = 1) + P(\text{spin}_1 = 1, \text{spin}_2 = 2) + P(\text{spin}_1 = 2, \text{spin}_2 = 1)$	A Table of Outcomes will be useful to identify all the possible values of X .
		$= \left[\left(\frac{4}{10} \right) \left(\frac{4}{10} \right) \right] + \left[\left(\frac{4}{10} \right) \left(\frac{3}{10} \right) \right] + \left[\left(\frac{3}{10} \right) \left(\frac{4}{10} \right) \right]$ $= 0.4$	Most students who attempted this part were able to identify all the possible of X correctly
	—	$P(X = 4)$ = P(spin ₁ = 1, spin ₂ = 3) +P(spin ₁ = 3, spin ₂ = 1) = \begin{bmatrix} 4 \\ 10 \\ 10 \\ 10 \\ \ 10 \\ \ \ \end{bmatrix} \end{bmatrix} \begin{bmatrix} 4 \\ 10 \\ 10 \\ \ \ \end{bmatrix} \end{bmatrix}	
		$= 1, \text{spin}_2 = 4 + P(\text{spin}_1 = 4, \text{sp})$ $= 1, \text{spin}_2 = 4 + P(\text{spin}_1 = 4, \text{sp})$ $= 1, \text{spin}_2 = 4 + P(\text{spin}_1 = 4, \text{sp})$ $= 1, \text{spin}_2 = 4 + P(\text{spin}_1 = 4, \text{sp})$ $= 1, \text{spin}_2 = 4 + P(\text{spin}_1 = 4, \text{sp})$ $= 1, \text{spin}_2 = 4 + P(\text{spin}_1 = 4, \text{sp})$ $= 1, \text{spin}_2 = 4 + P(\text{spin}_1 = 4, \text{sp})$ $= 1, \text{spin}_2 = 4 + P(\text{spin}_1 = 4, \text{spin}_2 = $	
	T	= 0.2 P(X = 7) $= P(\text{spin} = 3, \text{spin}_2 = 4) + P(\text{spin}_1 = 4, \text{spin}_2 = 3)$	Please read the question carefully.
	**************************************	$= \begin{bmatrix} 2 \\ (10) \\ (10) \end{bmatrix} \begin{bmatrix} 1 \\ (10) \\ (10) \end{bmatrix} + \begin{bmatrix} 1 \\ (10) \\ (10) \end{bmatrix} \begin{bmatrix} 2 \\ (10) \\ (10) \end{bmatrix}$	The question did <i>not</i> specifically ask for a Probability Distribution <i>Table</i> , hence it was not
10, e	The second	$\begin{aligned} \mathbf{F}(A=9) \\ &= \mathbf{P}(\mathrm{spin}_1 = 3, \mathrm{spin}_2 = 3) \\ &= \left[\left(\frac{2}{10} \right) \left(\frac{2}{10} \right) \right] \\ &= \left[\left(\frac{2}{10} \right) \left(\frac{2}{10} \right) \right] \end{aligned}$	necessary to present the probabilities in a table format.
		= 0.04	

Page 20 of 39

$P(X = 12)$ $= P(spin_1 = 4, spin_2 = 4)$ $= 0.01$ Alternative presentation format (Probability Distribution Table)	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
Calculate conditional probability (c) $P(Score < 10 Customer wins a prize)$ $= P(X < 10 X > 6)$	This question was a conditional probability question.
$= \frac{P(X < 10 \cap X > 6)}{P(X > 6)}$ $= \frac{P(X < 10 \cap X > 6)}{P(X = 7) + P(X = 9)}$	Many students did not interpret the question correctly.
$= \frac{(0.04) + (0.04)}{(0.04) + (0.04) + (0.04)}$ $= \frac{8}{9} \text{ or } 0.889 (3 \text{ s.f.})$	There were some students who included $X = 6$, i.e. using $X \ge 6$ instead of $X > 6$ for the condition of winning a prize.

Page 21 of 39

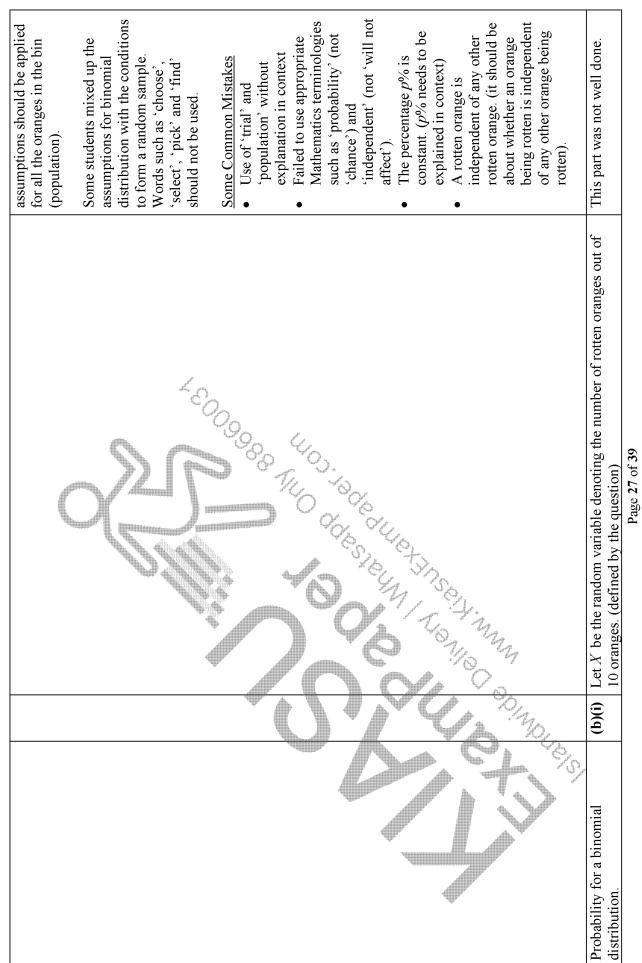
O6 Correlation and Linear Regression [LL] Assessment Objectives	Examiner's Feedback	s Feedback
with the aid (a)	It was important to	rtant to
	demonstrate	demonstrate the key skills
•	stated in the	stated in the assessment
-label axes × × × × × × × × × × × × × × × × × × ×	objective.	•
correct number of points	Most studen	Most students did not label the
	end points. §	end points. Some students
- label minimum and maximum x	labeled the a	labeled the axes wrongly.
and y values on the scatter plot \times		For this question, temperature t
		(°C) was the independent
		variable, hence it should be the
Calculate the product moment $r = 0.9474557$		Most students were able
e aid of		calculate the correlation
a G.C.		coefficient correctly using the
		GC. There were a small
		number of students who used
		the formula to calculate, which
		was not necessary for this
Á	question.	
odel		The important concept to
		understand was that both the r-
on coefficient and scatter in		value and scatter plot must be
diagram. diagram shows the points appear to lie on a curve rather than a straight line,		considered together to reach a
Perform linearization of a non-linear (b) For $k = a \ln t + b$	Most studen	Most students who attempted
	this part wer	this part were able to use the
linear regression line with the aid of	GC correctly	GC correctly to calculate the
a G.C.	correct a and b values.	d b values.
	However, th	However, there were quite a
	number who	number who did not read the
b = -923.838 (3 d.p.)	question cor	question correctly and failed to
	give their an	give their answers to the
	required accuracy	curacy.

Page 22 of 39

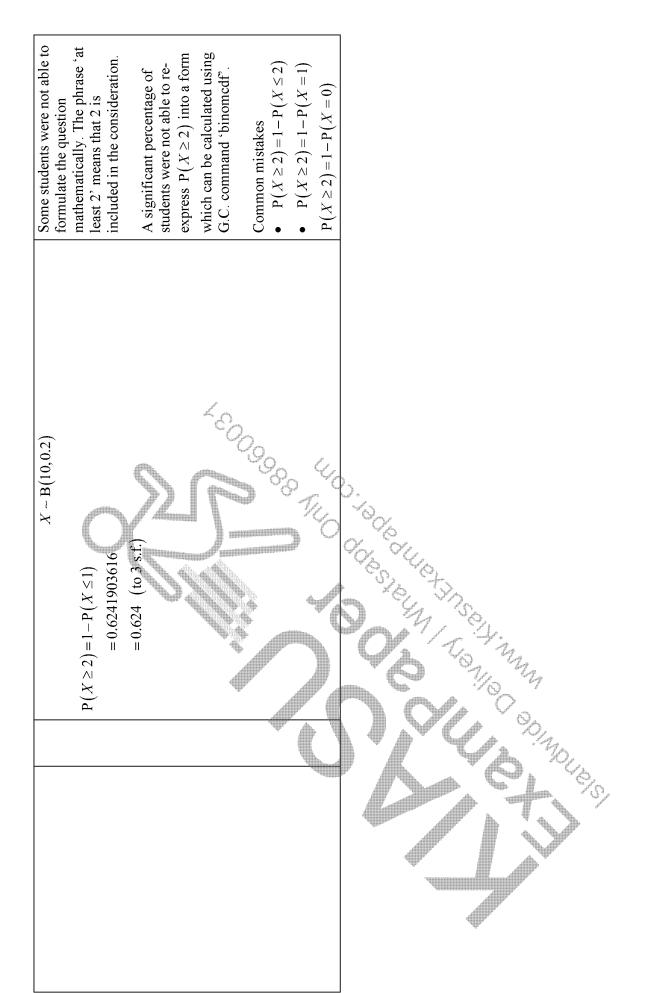
Calculate the product moment	(c) $r = r$	r = 0.967849 = 0.968(3 s.f.)	Most students who attempted
correlation coefficient of the			this part were able to use the
transformed relationship with the aid			GC to calculate the new r-
and contrast hetween	= S	$= a \ln t + b$ is a better model as the r-value is closer to 1	Most students were able to
)		explain their choice using the
indicators (the <i>r</i> -value)			key phrase $ r $ is closer to 1.
			Simply stating one new r-value
			being "greater than" the other
			is not sufficient.
Use a linear regression line for	(e) MI	len k = 38,	Most students who attempted
	4	s = 430.10/ m(38) = 923.63/0	the estimate correctly using the
Discern whether interpolation or		S=002,33033	regression line from (b)
extrapolation has been performed	Sal	es = 66,254 units	However many failed to
and me renaemity of the estimate	E		consider that in the context of
4			the question, sales was
			measured in hundreds of units
	2	traticula citara 2000 to out of the data round bear extranolation wing	Most students west of to
	JAC TAG	Frimadic suite 30 Crts out of the data failige hence exhapotation was	identify that 38°C was out of
			the data range and hence
		रेज	antenolation was carried out
	ф ,,d		leading to an unreliable
			estimate. The key phase
	<u>,</u>		"extrapolation" was necessary.
			There were a small number of
			students who tried to explain
			correlation and causation, but
			this explanation was not
P			addressing the reliability of the
			estimate.

Page 23 of 39

Q7 Permutations and Combinations & Probability [KP]	ns & Probability [KP]	
Assessment Objectives	Solution	Examiner's Feedback
Number of selections involving	(a)(i) No. of ways = ${}^{12}C_3 \times 3! = 1320$	Students commonly
restrictions.		compute as $^{12}C_3$,
		omitting the need for
		arrangement as it
		consists of 3 positions,
		chairperson, vice-
		chairperson and
		secretary.
	(a)(ii) Method D:	Students commonly
	$ $ $^{\circ}$	omit the need for
	Select 2 girls from 12 & 1 boy from 6 Select 1 girl from 12 & 2 boys from 6	arrangement as it
	followed by arrangement followed by arrangement	consists of 3 positions,
	=3456	chairperson, vice-
		chairperson and
4	Method @:	secretary.
	No. of ways	
	No restriction Select 3 girls from 12 followed by arrangement Select 3 boys from 6 followed by arrangement	
	=3456	
Probabilities involving	(b) Method D:	A number of students
arrangement of objects in a circle,	$(15-1)! \times {}^{15}C_{3} \times 3!$	did not realised that
where certain objects are	Required probability = $\frac{1}{(18-1)!}$	this part of the
separated.		question onwards
	4	require probability.
	136	Many continued to
		find number of ways.
		·
		There were students
		who were confused
		over the mandenen


Page 24 of 39 www.KiasuExamPaper.com 184

		Method @: [Not Recommended]	and addition principal.
		Required probability = $1 - \frac{(16-1)! \times 3!}{(18-1)!} - 3 \frac{(15-1)! \times {}^{15}C_2 \times 2! \times 2!}{(18-1)!}$	Students who used Method © often excluded the cases where any 2 can be
			together and 1 separated.
Probabilities involving arrangement of objects in a circle, where there is a given restriction.	(2)	Method $\overline{\mathbb{Q}}$: [Arrange boys first followed by the girls] Required probability = $\frac{(6-1)! \times 12!}{(18-1)!}$	Most students were able to arrange the boys or girls first successfully but struggled to complete
		Method Q: [Arrange girls first followed by the boys]	the remaining arrangement for the other gender.
		$ \begin{cases} (6-1)! \times \frac{12}{C_2} \times ^{10}C_2 \times ^8C_2 \times ^6C_2 \times ^4C_2 \times ^2C_2 \times $	
		$\frac{1}{6188}$ (18-1)!	
	Colored Solver	To long on the second of the s	


Page 25 of 39

Q8 Binomial Distribution [KP]			
Assessment Objectives	Solution		Examiner's Feedback
State the conditions	(a) The probability of an orange being rotten is constant at $p\%$.	p instant at p %.	This was not well done.
distribution is	The event of an orange being rotten is indepe	orange being rotten is independent of the event of any other	Some students stated the
a suitable model.	orange being rotten.		
			binomial distribution when
			they were implied in the
		d	• There is a fixed number of
		~c)	trials.
			There are two mutually
	92		exclusive outcomes – an
			orange being rotten and an
,			orange being non-rotten.
			The above conditions were
			covered in the description
			given in the question, so they
4			were not assumptions that need
			to be made.
			A cignificant negrentage of
			A significant percentage of
			students mixed up the 2
			assumptions and stated The
	300		probability of an orange being
			rotten is <u>independent</u> of any
			other orange being rotten." The
			words 'probability' and
			'independent' should not be
	and the second		used in the same sentence.
).		Some etudente seemed to think
			that the assumptions only
***			applied to the oranges in the
			packet (sample). The

Page 26 of 39

www.KiasuExamPaper.com

Page 28 of 39

www.KiasuExamPaper.com

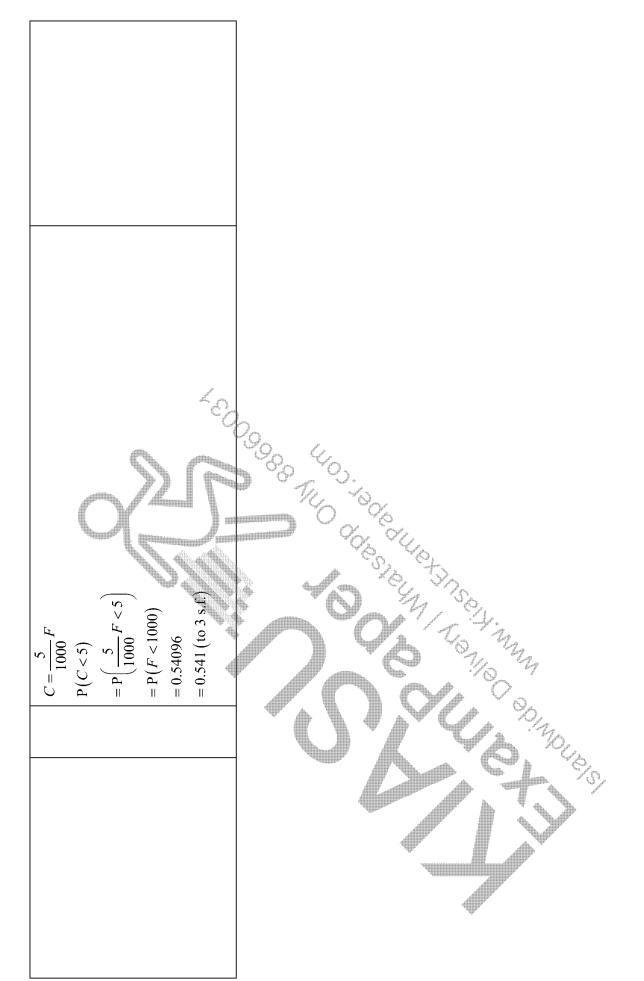
Determine expectation of a binomial distribution in a given context.	(b)(ii)	Expected number of packets of oranges that contains more than 1 rotten orange $= 100 [P(X > 1)]$ $= 100 [1 - P(X \le 1)]$ $= 62.41903616$	This part was not well done. Some students were not able to find the probability that a packet contains more than 1 rotten orange. The phrase
		Expected profit when all the packets of oranges are sold = $2(100) = 200$. For the store manager to have a net profit, Expected loss < Expected profit 62.41903616 d < 200	'more than 1' is equivalent to 'at least 2'. Students should use at least 4 decimal places in the intermediate steps to ensure the final answer is accurate up to 2 decimal places.
		$d < 3.20 \text{ (to 2 d.p.)}$ $0 < d < 3.20$ $\text{Method } \frac{2}{2}$ Total profit $= (100 - 62.41903616)(2) + 62.41903616(2 - d)$ $= 200 - 62.41903616d$	One common mistake made by students was to find the mode of the distribution of the number of packets of oranges that contain more than 1 rotten orange. It is important to realize that the mode is not the same as the expected number.
		For the store manager to have a net profit, Total profit >0 $200-62.419a > 0$ $a < 3.20$ (to 2 d.p.) $0 < a < 3.20$	
	100000 POS		

Page 29 of 39

	(3)	I at Vho the mondom viewichle denoting the mimber of return erronges out of	This not was a soon to the
betermine dinknown probability when given certain conditions.	3	Let A be the fairtoin variable denoting the number of forces of anges out of 10 oranges. (defined by the question)	This pair was poorly affempted.
)		$X \sim \mathbf{B}(10,0.01p)$	A significant percentage of
			students did not realize that p
		JOV (1/A)'U	was previously defined at the
		$\Gamma(A \le I) = 0.93$	start of the question. They had
		P(X=0)+P(X=1)=0.95	thought that they were to find a
		01 10	probability of an event.
		[] 	
		$(1-0.01p)^{10} + 0.1p(1-0.01p)^9 = 0.95$	One of the commonly seen
			mistakes was the use of p
			instead of $0.01p$. The correct
		USING G.C.,	notation for <i>p</i> % should be
		2 6771/38	$0.01n \text{ or } \frac{p}{p} \text{ (not } 0.0n)$
		V = 5.07 / 14.50	100 (100 (100)).
		=3.68 (to 3 s.f.)	
		C. C	Another common mistake was
		\$6.00 A. 1989 A. 1980 A. 1980 A. 1980 A. 1980	to state the value of p as 3.68%
4			(= 0.0368) instead of 3.68.
	#		
	A		
	4		
	9		
	TA		
	<u>ک</u>		
	وم		

Page 30 of 39

Examiner's Feedback	Poorly done.	Students either missed out the	square in $[P(A < 140)]^2$ or $\frac{3!}{2!}$.	Some students even wrote	$\Gamma(A_1 + A_2 < 200)$ for the case	mass less than 140g". They	did not realize that the masses	of the apples are independent	question.	Quite a number of students	interpreted the "total mass of	five randomly chosen apples"	as 5A and the total mass of	unee randomly chosen guavas	the wrong mean and variance.	Another careless mistake is	taking $Var(A) = 28$ and	Var $(G) = 43$, missing out the	squares altogether, when only	the standard deviation of each	random variable were given. Otherwise most students were	Culci wise, inost students were	able to get the answer.		
O9 Normal Distribution [LL] Assessment Objectives	rom a	Normal Distribution with given $= [P(A < 140)]^2 \times P(A > 170) \times \frac{3!}{2!}$		Consider the possible outcomes $-[1,(3,2,1+3)] \land 1,(3,2,1,3) \land 3$ (i.e. cases) which satisfy the $-(0.3341176)^2 \lor (0.36418933) \lor 3$					98	Calculate the means and (b) Let A be the random variable denoting the mass of an apple from the		endent Normal Variables	$aX \pm bI$ supermarket	$A \sim N(152.28^2)$ and $G \sim N(268.43^2)$		$A = A_1 + A_2 + A_3 + A_4 + A_5$	$X \sim N(5 \times 152, 5 \times 28^2)$	(000 09LJN - A	(07.65,001)NI A 1/16	$V \neq G_1 + G_2 + G_3$	$Y \sim N(3 \times 268, 3 \times 43^2)$		$Y \sim N(804, 5547)$	$X-Y \sim N(760-804,3920+5547)$	$X - Y \sim N(-44,9467)$


Page 31 of 39

	P(X < Y) = P(X - Y < 0)	
	= 0.6744435	
	= 0.674 (to 3 s.f.)	
To interpret and solve (c)	$F = A_1 + A_2 + A_3 + C$	A lot of students do not know
probabilities involving modulus	$E = M(2\sqrt{157} - 3\sqrt{36} + 3\sqrt{32})$	how to interpret the question.
of Normal distributions.	(C+×7+ 07×6,00,0×4 () 1 1 1 1 1 1 1 1 1	They took "mean mass of the
	$F \sim N(992.6050)$	Family Packs" as "sample
		mean of the Family Packs",
		which will not give the solution
	Given $P(F-992 < m) = 0.95$	to what the question asked for.
		Some students did not know
	F(-m < F - 992 < m) = 0.93	how to break up $ F-992 < m$
	P(992-m < F < 992+m) = 0.95	into $992 - m < F < 992 + m$
97		and with all sorts of other
	Mathad O' Tiging right Tail	combinations which cannot
	000 - 30 - 1144 440	derive the answer
	O	doing answer.
	m = 152.449	For the question, it is not
	(15) (15)	advisable to use GC table to
	C(T.S.C) CCT=M	find the answer to the value of
		m since it is not an integral
	Method (2: Using left tail	value. Students should just use
	000	inverse Normal with the GC to
		find the value that is required.
	M. 1.122.449	
	m = 153.(3 s.f.)	
1/2		
To interpret the question and (d)	Method ①: Convert weight from grams to kilograms to use selling price	Common mistake for method
n of	-	one: students only divided by
units and calculate the means and		1000 to 6050 for the variance
variance of the new random	$F \sim N(992,6050)$ (in g)	instead of dividing by 1000 ²
taliante or an analysis		

Page 32 of 39

Students who did by method 2 or 3 were able to get the answer.		
propriate units $F' \sim N\left(\frac{992}{1000}, \frac{6050}{1000^2}\right)$ (in kg) Let C be the cost of a Family Pack (\$kg). $C = 5F'$ $C = N(4.96.0.15125)$ P($C < 5$) = 0.54096 Method C : Convert selling price from \$/kg to \$/g Let C be the cost of a Family Pack in \$/gram and F be the total mass of a Family Pack in grams (from (iii)). Selling price of Family pack = \$5/kg \(\tilde{S}\) \$5.005/g $C = 0.005F$ $C \sim N(4.96.0.15125)$ P($C < 5$) = 0.54096 $C \sim N(4.96.0.15125)$ P($C < 5$) = 0.54096	Method 3: Convert random variable from price to weight in grams $F = N(002 6050)$ (in a)	Let C be the cost of a Family Pack ($\$/kg$).
variable in the appropriate units	() () () () () () () () () ()	,

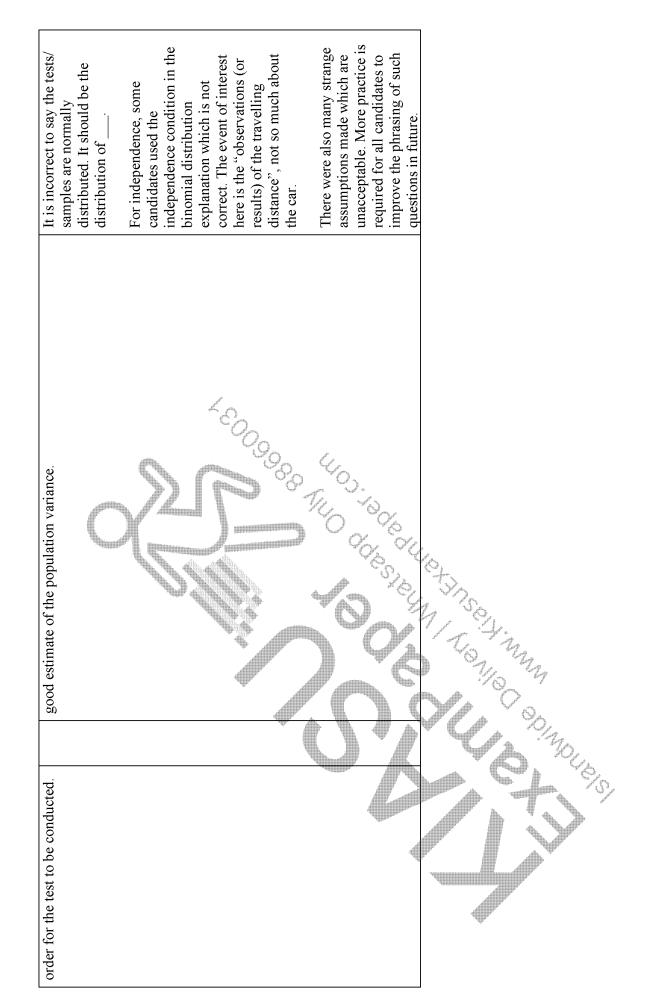
Page 33 of 39

Page 34 of 39

g [LL]		
	Solution	Examiner's Feedback
Calculate unbiased estimates of	(a) Unbiased estimates of the population mean	Unfortunately, this part was not
the population mean and variance	$\sum (x-650)$	well done by candidates.
when given consolidated data.	$=$ $\frac{1}{n}$ $+620$	
	24.20	Candidates did not apply the
	=+650	formulae accurately, especially
	50	finding unbiased estimate of
	= 649.3122	the population variance where
		it can be easily found in MF26.
	Unbiased estimates of the population variance, s ²	
		For unbiased estimates of
	$\frac{1}{1-\frac{1-\frac{1}{1-\frac{1}{1-\frac{1-\frac{1}{1-\frac{1-\frac{1}{1-\frac{1-\frac{1}{1-\frac{1-\frac{1}{1-\frac{1-\frac{1}{1-\frac{1-\frac{1}{1-\frac{1-\frac{1}{1-\frac{1-\frac{1}{1-\frac{1-\frac{1}{1-\frac{1-\frac{1-\frac{1-\frac{1}{1-1-\frac{1-\frac{1-\frac{1-\frac{1-\frac{1-\frac{1-\frac{1-\frac{1-\frac$	population mean, candidates
	$\frac{1}{n}$	did not add 650, hence their
	25	answer ends up to a negative
4	$(+34.39)^2$	value but did not realise
	227	something is wrong.
4	89621	The unbiased estimate of
	~	population mean is exact at
		649.3122. Candidates should
	= 404 (10.5 S.F.)	not round up to 3 s.f., making
		it less exact.
Perform Hypothesis Testing	$(b) = H_{1} = 650$	This topic is poorly done. It is
based on the requirements stated		obvious whether candidates
in the question.	$H_1: \mu < 0.00$, μ is the population mean travelling distance on a single charge	study the topic by looking at
The particular population in this	Under H	their presentation, some clearly
question is not explicitly stated as	$\sum_{i=1}^{n} (1-i)^{n} \sum_{i=1}^{n} (1-i)^{n$	did not know what was
being normally distributed, hence	Since sample size, $n = 50$ is sufficiently targe,	required for this question.
application of CLT is necessary.	$\overline{X} \sim N \left(650, \frac{464.21}{} \right)$ approximately by CL.T	
	0,	Some candidates got the
		alternative hypothesis testing
		wrong. It should be a left tail
		test. If Vesla (representing H_0)

Page 35 of 39

overstated its claim i.e. the Car Reviewer thinks that the mean is too high. Therefore, the car reviewer (representing H ₁) needs to test and he should test for a lower mean instead.	
Distribution of test statistic $Z = \frac{\overline{X} - 650}{\sqrt{464.21}} \sim N(0, 1)$ Test statistic, $z = \frac{649.3122 - 650}{\sqrt{464.21}} = -0.22573 \approx -0.226 (3 s.f.)$	Critical value method At 5% level of significance, we reject H ₀ if z _{ee} ≤ 1.64485 Freect H ₀ if z _{ee} ≤ 1.64485 Since z _{ee} ≤ 1.64485, we do not reject H ₀ if p-value = 0.4107056 ≈ 0.411 (3 s.f.) Since z _{ee} ≤ 1.64485, we do not reject H ₀ and conclude that there is insufficient evidence at the of significance that the car manufacturer has overstated the travelling distance on a single charge.


Page 36 of 39

They can use the critical value method or p-value method to give the conclusion. There were a significant number of candidates who got the correct <i>p</i> -value = 0.411 concluded that this is less than 0.05. They probably thought 4 is less than 5 subconsciously, please avoid this careless mistake.	There are 2 conditions to be satisfied before CLT can be applied: 1. Distribution is not normal / unknown. 2. Sample size is sufficiently large. Many candidates could state the second condition (<i>n</i> is large) but not the first, and also did not answer the question properly if CLT needs to be used. With regards to the second statement of the answer, candidates are still weak in using the correct terms. When sample size is large, CLT is used/applied. Candidates should not write CLT is "assumed" or "approximated". (Please avoid)
	itions for using Secause the distribution of the travelling distance on a single charge is an anknown (i.e. not normally distributed). With the sample size of 50 (large), CLT can be applied and the mean travelling distance on a single charge is approximately normally distributed. My the sample size of 50 (large), CLT can be applied and the mean travelling distance on a single charge is approximately normally distributed. Why was the sample size of 50 (large), CLT can be applied and the mean travelling distance on a single charge is approximately normally distributed. Why was the sample size of 50 (large), CLT can be applied and the mean travelling distance on a single charge is approximately normally distributed. Why was the sample size of 50 (large), CLT can be applied and the mean travelling distance on a single charge is approximately normally distributed. Why the sample size of 50 (large), CLT can be applied and the mean travelling distance on a single charge is approximately normally distributed. Why the sample size of 50 (large), CLT can be applied and the mean travelling distance on a single charge is approximately normally distributed. Why the sample size of 50 (large), CLT can be applied and the mean travelling distance on a single charge is approximately normally distributed.
	blem (c)
	Apply the conditions for using CLT to the context of the problem

Page 37 of 39

		Also, CLT is applied so that the distribution of the mean travelling distance i.e. \overline{X} is approximately normal. It does not equate to the
		distribution of the travelling distance i.e. <i>X</i> is approximately normal. <i>X</i> still remains to be an unknown distribution. Hence the word " mean " is crucial.
n the	(d) The TokTik car reviewer should use a 2-tail test since travelling distance on a single charge can either be more than or less than 650 km.	Other acceptable keywords include: differs from 650km.
context of the question	80 14	Some candidates who wrote "because the car reviewer wants to test if the claim is
		true" is not accepted. All hypothesis tests are testing
		whether the claim is true – it did not address why a 2 tailed
		test should be used instead of a one-tail test.
	Sol Sol With with a sol of the so	Some state the correct test without explaining. No credit is awarded since the question is not addressed.
g of the	(e) The TokTik car reviewer needs to assume that the travelling distance on a	Some candidates mentioned
conditions under which a Hypothesis Test can be	single charge is normally distributed.	"normally distributed" and "independent" but their
conducted. In the absence of such	He also needs to assume that the observations of travelling distance on a	phrasing distorted the accurate
conditions being stated explicitly in the question, suitable	single charge are independent.	meaning of the required assumptions.
assumptions need to be made in	Accept: Assume that the unbiased estimate of the population variance is a	,
	060 - 06 H	

Page 38 of 39

Page 39 of 39