Work in progress
The following questions illustrate the key concepts needed in this topic. See if you can answer them.
Click on the title for detailed discussion of how to tackle them.
Click on or hover over the question to show the answer.
Consider the points $A(3,-1,6), B(1,-1,-4)$ and $C(5,3,0)$.
Consider the points $A(3,-1,6), C(5,3,0), D(5,-2,5)$ and the lines
$l_1: \mathbf{r} =\begin{pmatrix} 3 \\ -1 \\ 6 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 2 \\ -3 \end{pmatrix}, \lambda \in \mathbb{R} \\
l_2: \mathbf{r} =\begin{pmatrix} 1 \\ -1 \\ -4 \end{pmatrix} + \mu \begin{pmatrix} 2 \\ -1 \\ -1 \end{pmatrix}, \mu \in \mathbb{R}$.
The lines $l$ and $l_3$ and the planes $\pi_1$ and $\pi_2$ have equations
$ l_1: \mathbf{r} =\begin{pmatrix} 3 \\ -1 \\ 6 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 2 \\ -3 \end{pmatrix}, \lambda \in \mathbb{R} \\
l_3: \mathbf{r} = \begin{pmatrix} 5 \\ 3 \\ 0 \end{pmatrix} + \nu \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}, \nu \in \mathbb{R} \\
\pi_1: x+y+z = 8 \\
\pi_2: 2x-3y+5z=-2$.
Consider the lines $l$ and $m$ and the planes $\pi_1$ and $\pi_2$ with equations:
$ l: \mathbf{r} =\begin{pmatrix} 3 \\ -1 \\ 6 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 2 \\ -3 \end{pmatrix}, \lambda \in \mathbb{R} \\
m: \mathbf{r} = \begin{pmatrix} 5 \\ 4 \\ -1 \end{pmatrix} + \mu \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}, \mu \in \mathbb{R} \\
\pi_1: x+y+z = 8 \\
\pi_2: 2x-3y+5z=-2$.
The point $B$ has coordinates $(1,-1,4)$. The equations of the line $l$ and the plane $\Pi$ are:
$ l: \mathbf{r}=(3\mathbf{i}-\mathbf{j}+6\mathbf{k}) + \lambda (\mathbf{i}+2\mathbf{j}-3\mathbf{k}), \lambda \in \mathbb{R} \\
\Pi: 2x-3y+5z = -2$.
The point $B$ has coordinates $(1,-1,4)$. The equations of the line $l$ and the plane $\pi$ are:
$ l: \mathbf{r}=(3\mathbf{i}-\mathbf{j}+6\mathbf{k}) + \lambda (\mathbf{i}+2\mathbf{j}-3\mathbf{k}), \lambda \in \mathbb{R} \\
\pi: x+y+z = 8$.
Consider the lines $l, m_1, m_2$ and $m_3$ and the planes $\Pi_1$ and $\Pi_2$ with equations: $ l: \mathbf{r} =\begin{pmatrix} 3 \\ -1 \\ 6 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 2 \\ -3 \end{pmatrix}, \lambda \in \mathbb{R} \\ m_1: \mathbf{r} =\begin{pmatrix} 7 \\ 6 \\ -5 \end{pmatrix} + \mu \begin{pmatrix} 2 \\ 3 \\ -5 \end{pmatrix}, \mu \in \mathbb{R} \\ m_2: \mathbf{r} =\begin{pmatrix} 4 \\ 0 \\ 7 \end{pmatrix} + \nu \begin{pmatrix} 2 \\ 3 \\ -5 \end{pmatrix}, \nu \in \mathbb{R} \\ m_3: \mathbf{r} =\begin{pmatrix} 4 \\ 0 \\ 7 \end{pmatrix} + \omega \begin{pmatrix} -2 \\ 4 \\ 6 \end{pmatrix}, \omega \in \mathbb{R} \\ \Pi_1: ax+by = 4 \\ \Pi_2: cx+y-z=d$.