11a. Vector basics

The following questions illustrate the key concepts needed in this topic. See if you can answer them.
Click on the title for detailed discussion of how to tackle them.
Click on or hover over non-show/prove questions to show the answer (on mobile devices, you may need to scroll to the right for the answers after clicking).

Notation
In print, vectors are typeset in bold, like $\mathbf{a}$. In writing, we usually put a tilde underneath, like $\underset{\sim}{a}$.
$\overrightarrow{AB}$ is the vector represented by the directed line segment $AB$.
$| \textbf{ a }|$: the magnitude of $\mathbf{a}$.
$\hat{\mathbf{a}}$: a unit vector in the direction of $\mathbf{a}$.
$\mathbf{i} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \, \mathbf{j} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \, \mathbf{k} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$.
Ratio theorem formula (provided)
The point dividing $AB$ in the ratio $\lambda:\mu$ has position vector $ \displaystyle \frac{\mu \mathbf{a} + \lambda \mathbf{b}}{\lambda + \mu}$

$ \overrightarrow{OA} = \begin{pmatrix} 2 \\ -3 \\ 1 \end{pmatrix}, \overrightarrow{OB} = \begin{pmatrix} 0 \\ 4 \\ -3 \end{pmatrix} $.
Find $\overrightarrow{OC}$, given that $OACB$ is a parallelogram.
$\overrightarrow{OC}= \begin{pmatrix} 2 \\ 1 \\ -2 \end{pmatrix}$

Given that $ \begin{pmatrix} 1 \\ 2 \\ -3 \end{pmatrix}$ is parallel to $\begin{pmatrix} -3 \\ y \\ z \end{pmatrix}$, find $y$ and $z$.
$y=-7, z=17$

Explain why $\begin{pmatrix} 1 \\ 2 \\ -3 \end{pmatrix}$ is parallel to $\begin{pmatrix} 4 \\ 8 \\ -12 \end{pmatrix}$.

Given that $ \mathbf{a} = \mathbf{i} - \mathbf{j} + 2\mathbf{k}$, find $| \mathbf{a} |$ and $\hat{\mathbf{a}}$. $\sqrt{6}, \frac{1}{\sqrt{6}} (\mathbf{i} - \mathbf{j} + 2 \mathbf{k})$

Find a vector that is of magnitude $5$ and is parallel to $\mathbf{a}$. $\frac{5}{\sqrt{6}}(\mathbf{i} - \mathbf{j} + 2 \mathbf{k}) $

Given points $A (5,-1,3)$ and $B$ with position vector $\overrightarrow{OB} = \mathbf{i} + 2 \mathbf{j} - 4 \mathbf{k}$, find the vector $\overrightarrow{AB}$. $(-4\mathbf{i} +3 \mathbf{j} - 7\mathbf{k})$

Find the distance between $A$ and $B$. $\sqrt{74} \textrm{ units}$

It is further given that $C$ has coordinates $(13, y, 17)$. Given that $A,B$ and $C$ are collinear, find $y$. $y=-7$

If $D$ has coordinates $(-3, 5, -11)$. Show that $A,B$ and $D$ lie on the same line.

The points $A$ and $B$ have coordinates $(1, 2, -3)$ and $(-2,0,5)$ respectively.
Given that the point $P$ divides the line $AB$ in the ratio $1:2$, find the position vector of $P$. $\frac{4}{3} \mathbf{j} - \frac{1}{3} \mathbf{k}$

It is given that the point $Q$ lies on $AB$ extended such that $AB:AQ=2:5$.
Find the coordinates of $Q$. $\left (-\frac{13}{2}, -3, 17 \right )$

Let $\mathbf{a}$ and $\mathbf{b}$ be non-parallel vectors that are non-zero.
It is given that $\overrightarrow{OX} = \lambda \mathbf{a} + \frac{1-\lambda}{2} \mathbf{b}$ and $\overrightarrow{OY} = \frac{1}{2} \mathbf{a} + \frac{1}{2} \mathbf{b}$,
where $\lambda$ is a real constant, $\lambda \neq 0$.
Given that $O,X$ and $Y$ are collinear, find the value of the $\lambda$. $\lambda = \frac{1}{3}$